# The Relationship between Multiplicative Complexity and Nonlinearity

• Joan Boyar
• Magnus Gausdal Find
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8635)

## Abstract

We consider the relationship between nonlinearity and multiplicative complexity for Boolean functions with multiple outputs, studying how large a multiplicative complexity is necessary and sufficient to provide a desired nonlinearity. For quadratic circuits, we show that there is a tight connection between error correcting codes and circuits computing functions with high nonlinearity. Using known coding theory results, the lower bound proven here, for quadratic circuits for functions with n inputs and n outputs and high nonlinearity, shows that at least 2.32n AND gates are necessary. We further show that one cannot prove stronger lower bounds by only appealing to the nonlinearity of a function; we show a bilinear circuit computing a function with almost optimal nonlinearity with the number of AND gates being exactly the length of such a shortest code. For general circuits, we exhibit a concrete function with multiplicative complexity at least 2n − 3.

## Keywords

Boolean Function Linear Code Advance Encryption Standard General Circuit Bend Function
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Boyar, J., Find, M., Peralta, R.: Four measures of nonlinearity. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 61–72. Springer, Heidelberg (2013), eprint with correction available at the Cryptology ePrint Archive, Report 2013/633 (2013), http://eprint.iacr.org/
2. 2.
Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of Boolean functions over the basis ($$\land$$, ⊕, 1). Theor. Comput. Sci. 235(1), 43–57 (2000)
3. 3.
Brown, M.R., Dobkin, D.P.: An improved lower bound on polynomial multiplication. IEEE Trans. Computers 29(5), 337–340 (1980)
4. 4.
Bshouty, N.H., Kaminski, M.: Polynomial multiplication over finite fields: from quadratic to straight-line complexity. Computational Complexity 15(3), 252–262 (2006)
5. 5.
Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Grundlehren der mathematischen Wissenschaften, vol. 315. Springer (1997)Google Scholar
6. 6.
Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, ch. 8, pp. 257–397. Cambridge University Press, Cambridge (2010)
7. 7.
Carlet, C.: Vectorial Boolean functions for cryptography. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, ch. 9, pp. 398–469. Cambridge Univ. Press, Cambridge (2010)
8. 8.
Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995)
9. 9.
Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption Standard. Security and Cryptology. Springer (2002)Google Scholar
10. 10.
Jukna, S.: Extremal Combinatorics: with Applications in Computer Science, 2nd edn. Texts in Theoretical Computer Science. Springer (2011)Google Scholar
11. 11.
Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Springer, Heidelberg (2012)
12. 12.
Kaminski, M., Bshouty, N.H.: Multiplicative complexity of polynomial multiplication over finite fields. J. ACM 36(1), 150–170 (1989)
13. 13.
Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)
14. 14.
Komargodski, I., Raz, R., Tal, A.: Improved average-case lower bounds for demorgan formula size. In: FOCS, pp. 588–597 (2013)Google Scholar
15. 15.
Lempel, A., Seroussi, G., Winograd, S.: On the complexity of multiplication in finite fields. Theor. Comput. Sci. 22, 285–296 (1983)
16. 16.
McEliece, R.J., Rodemich, E.R., Rumsey Jr., H., Welch, L.R.: New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans. Inform. Theory 23(2), 157–166 (1977)
17. 17.
Mirwald, R., Schnorr, C.P.: The multiplicative complexity of quadratic Boolean forms. Theor. Comput. Sci. 102(2), 307–328 (1992)
18. 18.
Nechiporuk, E.I.: On the complexity of schemes in some bases containing nontrivial elements with zero weights. Problemy Kibernetiki 8, 123–160 (1962) (in Russian)
19. 19.
Schnorr, C.P.: The multiplicative complexity of Boolean functions. In: Mora, T. (ed.) AAECC 1988. LNCS, vol. 357, pp. 45–58. Springer, Heidelberg (1989)
20. 20.
Sloane, N., MacWilliams, F.: The Theory of Error Correcting Codes. North-Holland Math. Library 16 (1977)Google Scholar
21. 21.
Strassen, V.: Die berechnungskomplexität von elementarsymmetrischen funktionen und von interpolationskoeffizienten. Numerische Mathematik 20(3), 238–251 (1973)
22. 22.
Strassen, V.: Vermeidung von Divisionen. Journal für die reine und angewandte Mathematik 264, 184–202 (1973)
23. 23.
Vaikuntanathan, V.: Computing blindfolded: New developments in fully homomorphic encryption. In: Ostrovsky, R. (ed.) FOCS, pp. 5–16. IEEE (2011)Google Scholar