In this paper we analyze a framework for an ECOC classification system founded on the use of LPDC codes, a class of codes well-known in Coding Theory. Such approach provides many advantages over traditional ECOC codings. First, codewords are generated in an algebraic way without requiring any selection of rows and columns of the coding matrix. Second, the decoding phase can be improved by exploiting the algebraic properties of the code. In particular, it is possible to detect and recover possible errors produced by the dichotomizers through an iterative mechanism. Some experiments have been accomplished with the focus on the parity-check matrix used to define the codewords of the LDPC code, so as to determine how the code parameters influence the performance of the proposed approach.


ECOC LDPC codes Ensemble Methods 


  1. 1.
    Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research 1, 113–141 (2000)MathSciNetGoogle Scholar
  2. 2.
    Alpaydin, E., Mayoraz, E.: Learning error-correcting output codes from data. In: Ninth International Conference on Artificial Neural Networks, ICANN 1999 (Conf. Publ. No. 470), vol. 2, pp. 743–748 (1999)Google Scholar
  3. 3.
    Bautista, M.Á., Escalera, S., Baró, X., Radeva, P., Vitrià, J., Pujol, O.: Minimal design of error-correcting output codes. Pattern Recognition Letters 33(6), 693–702 (2012)CrossRefGoogle Scholar
  4. 4.
    Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass problems. In: Cesa-Bianchi, N., Goldman, S.A. (eds.) COLT, pp. 35–46. Morgan Kaufmann (2000)Google Scholar
  5. 5.
    Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)zbMATHGoogle Scholar
  6. 6.
    Escalera, S., Pujol, O., Radeva, P.: On the decoding process in ternary error-correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 120–134 (2010)CrossRefGoogle Scholar
  7. 7.
    Escalera, S., Tax, D.M.J., Pujol, O., Radeva, P., Duin, R.P.W.: Subclass problem-dependent design for error-correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1041–1054 (2008)CrossRefGoogle Scholar
  8. 8.
    Frank, A., Asuncion, A.: UCI machine learning repository (2010)Google Scholar
  9. 9.
    Gallager, R.G.: Low density parity-check codes. MIT Press (1963)Google Scholar
  10. 10.
    Ghani, R.: Combining labeled and unlabeled data for text classification with a large number of categories. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) ICDM, pp. 597–598. IEEE Computer Society (2001)Google Scholar
  11. 11.
    Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems, vol. 10. The MIT Press (1998)Google Scholar
  12. 12.
    Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, ch. 11. MIT Press, Cambridge (1999)Google Scholar
  13. 13.
    Kittler, J., Ghaderi, R., Windeatt, T., Matas, J.: Face verification via error correcting output codes. Image Vision Comput. 21, 1163–1169 (2003)CrossRefGoogle Scholar
  14. 14.
    MacKay, D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory 45, 399–431 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Marrocco, C., Simeone, P., Tortorella, F.: Coding theory tools for improving recognition performance in ECOC systems. In: Zhou, Z.-H., Roli, F., Kittler, J. (eds.) MCS 2013. LNCS, vol. 7872, pp. 201–211. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Moreira, J.C., Farrell, P.G.: Essentials of error-control coding. John Wiley & Sons (2006)Google Scholar
  17. 17.
    Pujol, O., Radeva, P., Vitrià, J.: Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1007–1012 (2006)CrossRefGoogle Scholar
  18. 18.
    Simeone, P., Marrocco, C., Tortorella, F.: Design of reject rules for ECOC classification systems. Pattern Recognition 45(2), 863–875 (2012)Google Scholar
  19. 19.
    Tanner, R.M.: A Recursive Approach to Low Complexity Codes. IEEE Transactions on Information Theory 27, 533–547 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Windeatt, T., Ardeshir, G.: Boosted ECOC ensembles for face recognition. In: Proceedings of the International Conference on Visual Information Engineering, pp. 165–168 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Claudio Marrocco
    • 1
  • Francesco Tortorella
    • 1
  1. 1.Department of Electrical and Information EngineeringUniversità degli Studi di Cassino e del L.M.Cassino (FR)Italia

Personalised recommendations