Advertisement

Improved Object Matching Using Structural Relations

  • Estephan Dazzi
  • Teofilo de Campos
  • Roberto M. CesarJr.
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8621)

Abstract

This paper presents a method for object matching that uses local graphs called keygraphs instead of simple keypoints. A novel method to compare keygraphs was proposed in order to exploit their local structural information, producing better local matches. This speeds up an object matching pipeline, particularly using RANSAC, because each keygraph match contains enough information to produce a pose hypothesis, significantly reducing the number of local matches required for object matching and pose estimation. The experimental results show that a higher accuracy was achieved with this approach.

Keywords

Local feature matching SIFT hierarchical k-means tree RANSAC graph-based structural information 

References

  1. 1.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV (2004)Google Scholar
  2. 2.
    Sirmacek, B., Unsalan, C.: Urban-area and building detection using SIFT keypoints and graph theory. IEEE Trans. on Geoscience and Remote Sensing (2009)Google Scholar
  3. 3.
    McAuley, J.J., Caetano, T.S.: Fast matching of large point sets under occlusions. Pattern Recognition (2012)Google Scholar
  4. 4.
    Morimitsu, H., Hashimoto, M., Pimentel, R.B., Cesar Jr., R.M., Hirata Jr., R.: Keygraphs for sign detection in indoor environments by mobile phones. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 315–324. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISSAPP (2009)Google Scholar
  6. 6.
    Hsiao, E., Collet, A., Hebert, M.: Making specific features less discriminative to improve point-based 3D object recognition. In: CVPR (2010)Google Scholar
  7. 7.
    Szeliski, R.: Computer vision: algorithms and applications. Springer (2010)Google Scholar
  8. 8.
    Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: An accurate O(n) solution to the PnP problem. IJCV (2009)Google Scholar
  9. 9.
    Ni, J., Qiu, Q., Chellappa, R.: Subspace interpolation via dictionary learning for unsupervised domain adaptation. In: CVPR (2013)Google Scholar
  10. 10.
    McAuley, J.J., Campos, T.d., Caetano, T.S.: Unified graph matching in Euclidean spaces. In: CVPR (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Estephan Dazzi
    • 1
    • 2
  • Teofilo de Campos
    • 2
  • Roberto M. CesarJr.
    • 1
  1. 1.Instituto de Matemática e Estatística - IMEUniversidade de São Paulo - USPSão PauloBrasil
  2. 2.CVSSPUniversity of SurreyGuildfordUK

Personalised recommendations