Advertisement

Towards Scalable Prototype Selection by Genetic Algorithms with Fast Criteria

  • Yenisel Plasencia-Calaña
  • Mauricio Orozco-Alzate
  • Heydi Méndez-Vázquez
  • Edel García-Reyes
  • Robert P. W. Duin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8621)

Abstract

How to select the prototypes for classification in the dissimilarity space remains an open and interesting problem. Especially, achieving scalability of the methods is desirable due to enormous amounts of information arising in many fields. In this paper we pose the question: are genetic algorithms good for scalable prototype selection? We propose two methods based on genetic algorithms, one supervised and the other unsupervised, whose analyses provide an answer to the question. Results on dissimilarity datasets show the effectiveness of the proposals.

Keywords

dissimilarity space scalable prototype selection genetic algorithm 

References

  1. 1.
    Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition: Foundations and Applications (Machine Perception and Artificial Intelligence). World Scientific Publishing Co., Inc., River Edge (2005)Google Scholar
  2. 2.
    Pekalska, E., Duin, R.P.W., Paclík, P.: Prototype selection for dissimilarity-based classifiers. Pattern Recogn. 39(2), 189–208 (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bunke, H., Riesen, K.: Graph classification based on dissimilarity space embedding. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 996–1007. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Olivetti, E., Nguyen, T.B., Garyfallidis, E.: The approximation of the dissimilarity projection. In: Second Workshop on Pattern Recognition in NeuroImaging, PRNI 2012, pp. 85–88. IEEE Computer Society, Washington, DC (2012)CrossRefGoogle Scholar
  5. 5.
    García-Pedrajas, N., Haro-García, A.: Scaling up data mining algorithms: review and taxonomy. Progress in Artificial Intelligence 1(1), 71–87 (2012)CrossRefGoogle Scholar
  6. 6.
    Plasencia-Calaña, Y., García-Reyes, E., Orozco-Alzate, M., Duin, R.P.W.: Prototype selection for dissimilarity representation by a genetic algorithm. In: Proceedings of the 20th International Conference on Pattern Recognition, ICPR 2010, pp. 177–180. IEEE Computer Society, Washington, DC (2010)CrossRefGoogle Scholar
  7. 7.
    Lozano, M., Sotoca, J.M., Sánchez, J.S., Pla, F., Pekalska, E., Duin, R.P.W.: Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces. Pattern Recogn. 39(10), 1827–1838 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Zare Borzeshi, E., Piccardi, M., Riesen, K., Bunke, H.: Discriminative prototype selection methods for graph embedding. Pattern Recogn. 46(6), 1648–1657 (2013)CrossRefzbMATHGoogle Scholar
  9. 9.
    Jain, A.K., Zongker, D.: Representation and recognition of handwritten digits using deformable templates. IEEE Trans. Pattern Anal. Mach. Intell. 19, 1386–1391 (1997)CrossRefGoogle Scholar
  10. 10.
    Spillmann, B., Neuhaus, M., Bunke, H., Pękalska, E., Duin, R.P.W.: Transforming strings to vector spaces using prototype selection. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 287–296. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Alimoglu, F., Alpaydin, E.: Methods of combining multiple classifiers based on different representations for pen-based handwritten digit recognition. In: Fifth Turkish Artificial Intelligence and Artificial Neural Networks Symposium (1996)Google Scholar
  12. 12.
    Messer, K., Matas, J., Kittler, J., Jonsson, K.: XM2VTSDB: The extended M2VTS database. In: Second International Conference on Audio and Video-based Biometric Person Authentication, pp. 72–77 (1999)Google Scholar
  13. 13.
    Frank, A., Asuncion, A.: UCI machine learning repository (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yenisel Plasencia-Calaña
    • 1
    • 2
  • Mauricio Orozco-Alzate
    • 3
  • Heydi Méndez-Vázquez
    • 1
  • Edel García-Reyes
    • 1
  • Robert P. W. Duin
    • 2
  1. 1.Advanced Technologies Application CenterHavanaCuba
  2. 2.Faculty of Electrical Engineering, Mathematics and Computer SciencesDelft University of TechnologyThe Netherlands
  3. 3.Departamento de Informática y ComputaciónUniversidad Nacional de Colombia - Sede ManizalesManizalesColombia

Personalised recommendations