Video Analysis of a Snooker Footage Based on a Kinematic Model

  • Aysylu Gabdulkhakova
  • Walter G. Kropatsch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8621)


Taking an inspiration from psychological studies of visual attention, the contribution of this paper lies in prediction of the critical points of the trajectory using the structure of a scene and physical motion model. On one side, we present our approach for video analysis that differs from traditional tracking techniques by predicting future states of the moving object rather than its next consecutive position using the physically-based motion functionality. On the other side, we propose to use the structure of the scene, which contains the information about the obstacles and space limits, for discovering the critical points of the trajectory. As a proof of concept we developed the use case application for analysing snooker footage.


Video Frame Motion Model Kinematic Model Video Analysis Motion Functionality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson, R.L.: A robot ping-pong player: experiment in real-time intelligent control. MIT Press (1988)Google Scholar
  2. 2.
    Bunke, H., Günter, S.: Towards bridging the gap between statistical and structural pattern recognition: Two new concepts in graph matching. In: Singh, S., Murshed, N., Kropatsch, W.G. (eds.) ICAPR 2001. LNCS, vol. 2013, pp. 1–11. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Denman, H., Rea, N., Kokaram, A.: Content-based analysis for video from snooker broadcasts. Computer Vision and Image Understanding 92(2), 176–195 (2003)CrossRefGoogle Scholar
  4. 4.
    Horn, B., Schunck, B.: Determining optical flow. In: 1981 Technical Symposium East, pp. 319–331. International Society for Optics and Photonics (1981)Google Scholar
  5. 5.
    Huang, Y., Xu, D., Tan, M., Su, H.: Trajectory prediction of spinning ball for ping-pong player robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3434–3439. IEEE (2011)Google Scholar
  6. 6.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal of basic Engineering 82(1), 35–45 (1960)CrossRefGoogle Scholar
  7. 7.
    Lee, D., Glueck, M., Khan, A., Fiume, E., Jackson, K.: A survey of modeling and simulation of skeletal muscle. ACM Transactions on Graphics 28(4), 1–13 (2010)CrossRefGoogle Scholar
  8. 8.
    Legg, P.A., Parry, M.L., Chung, D.H., Jiang, R.M., Morris, A., Griffiths, I.W., Marshall, D., Chen, M.: Intelligent filtering by semantic importance for single-view 3d reconstruction from snooker video. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 2385–2388. IEEE (2011)Google Scholar
  9. 9.
    Lewis, J.: Fast template matching. In: Vision interface, vol. 95, pp. 15–19 (1995)Google Scholar
  10. 10.
    Maggio, E., Cavallaro, A.: Video tracking: theory and practice. John Wiley & Sons, Chichester (2011)CrossRefGoogle Scholar
  11. 11.
    Rea, N., Dahyot, R., Kokaram, A.: Semantic event detection in sports through motion understanding. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 88–97. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Resal, H.-A.: Commentaire à la théorie mathématique du jeu de billard. Nelineinaya Dinamika (Russian Journal of Nonlinear Dynamics) 6(2), 415–438 (2010)Google Scholar
  13. 13.
    Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T.: A human aware mobile robot motion planner. IEEE Transactions on Robotics 23(5), 874–883 (2007)CrossRefGoogle Scholar
  14. 14.
    Weiser, M., Zachow, S., Deuflhard, P.: Craniofacial surgery planning based on virtual patient models. it-Information Technology 52(5), 258–263 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Aysylu Gabdulkhakova
    • 1
  • Walter G. Kropatsch
    • 1
  1. 1.Pattern Recognition and Image Processing GroupVienna University of TechnologyAustria

Personalised recommendations