Advertisement

FleXOR: Flexible Garbling for XOR Gates That Beats Free-XOR

  • Vladimir Kolesnikov
  • Payman Mohassel
  • Mike Rosulek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8617)

Abstract

Most implementations of Yao’s garbled circuit approach for 2-party secure computation use the free-XOR optimization of Kolesnikov & Schneider (ICALP 2008). We introduce an alternative technique called flexible-XOR (fleXOR) that generalizes free-XOR and offers several advantages. First, fleXOR can be instantiated under a weaker hardness assumption on the underlying cipher/hash function (related-key security only, compared to related-key and circular security required for free-XOR) while maintaining most of the performance improvements that free-XOR offers. Alternatively, even though XOR gates are not always “free” in our approach, we show that the other (non-XOR) gates can be optimized more heavily than what is possible when using free-XOR. For many circuits of cryptographic interest, this can yield a significantly (over 30%) smaller garbled circuit than any other known techniques (including free-XOR) or their combinations.

Keywords

Hash Function Random Oracle Topological Order Oblivious Transfer Output Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Applebaum, B.: Garbling XOR gates “For free” in the standard model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 162–181. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press (1990)Google Scholar
  3. 3.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press (2012)Google Scholar
  4. 4.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of the “Free-XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable multiparty computation with nearly optimal work and resilience. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Henecka, W., Schneider, T.: Memory efficient secure function evaluation, https://code.google.com/p/me-sfe/
  8. 8.
    Hirt, M., Maurer, U., Lucas, C.: A dynamic tradeoff between active and passive corruptions in secure multi-party computation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 203–219. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Hirt, M., Tschudi, D.: Efficient general-adversary multi-party computation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 181–200. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using symmetric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Kolesnikov, V., Kumaresan, R.: Improved secure two-party computation via information-theoretic garbled circuits. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 205–221. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 54–70. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: More efficient and secure two-party computation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 36–53. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: Proceedings of the 1st ACM Conference on Electronic Commerce, EC 1999, pp. 129–139. ACM, New York (1999)Google Scholar
  19. 19.
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Shelat, A., Shen, C.-H.: Two-output secure computation with malicious adversaries. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Tillich, S., Smart, N.: Circuits of basic functions suitable for MPC and FHE, http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Vladimir Kolesnikov
    • 1
  • Payman Mohassel
    • 2
  • Mike Rosulek
    • 3
  1. 1.Bell LabsMurray HillUSA
  2. 2.University of CalgaryCalgaryCanada
  3. 3.Oregon State UniversityCorvallisUSA

Personalised recommendations