Advertisement

How to Use Bitcoin to Design Fair Protocols

  • Iddo Bentov
  • Ranjit Kumaresan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8617)

Abstract

We study a model of fairness in secure computation in which an adversarial party that aborts on receiving output is forced to pay a mutually predefined monetary penalty. We then show how the Bitcoin network can be used to achieve the above notion of fairness in the two-party as well as the multiparty setting (with a dishonest majority). In particular, we propose new ideal functionalities and protocols for fair secure computation and fair lottery in this model.

One of our main contributions is the definition of an ideal primitive, which we call \(\mathcal{F}_{\mathrm{CR}}^\star\) (CR stands for “claim-or-refund”), that formalizes and abstracts the exact properties we require from the Bitcoin network to achieve our goals. Naturally, this abstraction allows us to design fair protocols in a hybrid model in which parties have access to the \(\mathcal{F}_{\mathrm{CR}}^\star\) functionality, and is otherwise independent of the Bitcoin ecosystem. We also show an efficient realization of \(\mathcal{F}_{\mathrm{CR}}^\star\) that requires only two Bitcoin transactions to be made on the network.

Our constructions also enjoy high efficiency. In a multiparty setting, our protocols only require a constant number of calls to \(\mathcal{F}_{\mathrm{CR}}^\star\) per party on top of a standard multiparty secure computation protocol. Our fair multiparty lottery protocol improves over previous solutions which required a quadratic number of Bitcoin transactions.

Keywords

Fair exchange Secure computation Bitcoin 

References

  1. 1.
    Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party computations via the bitcoin deposits, ePrint 2013/837 (2013)Google Scholar
  2. 2.
    Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multiparty computations on bitcoin. In: IEEE Security and Privacy (2014)Google Scholar
  3. 3.
    Asharov, G.: Towards characterizing complete fairness in secure two-party computation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 291–316. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  4. 4.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic protocols for fair exchange. In: ACM CCS, pp. 7–17 (1997)Google Scholar
  5. 5.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic Fair Exchange of Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Back, A., Bentov, I.: Note on fair coin toss via bitcoin (2013), http://arxiv.org/abs/1402.3698
  7. 7.
    Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make bitcoin a better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: IEEE FOCS, pp. 468–473 (1989)Google Scholar
  9. 9.
    Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-Secure Multiparty Computation without Honest Majority and the Best of Both Worlds. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Belenkiy, M., Chase, M., Erway, C., Jannotti, J., Kupcu, A., Lysyanskaya, A., Rachlin, E.: Making p2p accountable without losing privacy. In: Proc. of WPES (2007)Google Scholar
  11. 11.
    Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.: A fair protocol for signing contracts (extended abstract). In: Brauer, W. (ed.) ICALP. LNCS, vol. 194, pp. 43–52. Springer, Heidelberg (1985)Google Scholar
  12. 12.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: ACM STOC (1988)Google Scholar
  13. 13.
    Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols, ePrint 2014/129 (2014)Google Scholar
  14. 14.
    Boneh, D., Naor, M.: Timed Commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Cachin, C., Camenisch, J.L.: Optimistic Fair Secure Computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13(1), 143–202 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: IEEE FOCS, pp. 136–145 (2001)Google Scholar
  18. 18.
    Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: ACM STOC, pp. 11–19 (1988)Google Scholar
  20. 20.
    Chen, L., Kudla, C., Paterson, K.G.: Concurrent Signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 287–305. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Clark, J., Essex, A.: CommitCoin: Carbon Dating Commitments with Bitcoin. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 390–398. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: STOC, pp. 364–369 (1986)Google Scholar
  23. 23.
    Friedman, E., Resnick, P.: The social cost of cheap pseudonyms. Journal of Economics and Management Strategy, 173–199 (2000)Google Scholar
  24. 24.
    Garay, J., Jakobsson, M.: Timed release of standard digital signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 168–182. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Garay, J.A., Jakobsson, M., MacKenzie, P.D.: Abuse-Free Optimistic Contract Signing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Garay, J., Katz, J., Kumaresan, R., Zhou, H.-S.: Adaptively secure broadcast, revisited. In: ACM PODC, pp. 179–186 (2011)Google Scholar
  27. 27.
    Garay, J., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource fairness and composability of cryptographic protocols. In: TCC, pp. 404–428 (2006)Google Scholar
  28. 28.
    Garay, J.A., Pomerance, C.: Timed fair exchange of standard signatures. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 190–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Goldreich, O.: Foundations of cryptography: Basic Applications, vol. 2 (2004)Google Scholar
  30. 30.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: ACM STOC, pp. 218–229 (1987)Google Scholar
  31. 31.
    Goldwasser, S., Levin, L.A.: Fair Computation of General Functions in Presence of Immoral Majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 77–93. Springer, Heidelberg (1991)Google Scholar
  32. 32.
    Gordon, S., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-party computation. In: ACM STOC, pp. 413–422 (2008)Google Scholar
  33. 33.
    Gordon, D., Ishai, Y., Moran, T., Ostrovsky, R., Sahai, A.: On Complete Primitives for Fairness. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 91–108. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  34. 34.
    Gordon, S.D., Katz, J.: Partial Fairness in Secure Two-Party Computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  35. 35.
    Huang, Y., Katz, J., Evans, D.: Private set intersection: Are garbled circuits better than custom protocols? In: NDSS (2012)Google Scholar
  36. 36.
    Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing Garbled Circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 458–475. Springer, Heidelberg (2014)Google Scholar
  37. 37.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  38. 38.
    Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally Composable Synchronous Computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  39. 39.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  40. 40.
    Küpçü, A., Lysyanskaya, A.: Optimistic Fair Exchange with Multiple Arbiters. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 488–507. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  41. 41.
    Küpçü, A., Lysyanskaya, A.: Usable Optimistic Fair Exchange. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 252–267. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  42. 42.
    Lindell, A.Y.: Legally-enforceable fairness in secure two-party computation. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 121–137. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  43. 43.
    Lindell, Y., Riva, B.: Cut-and-Choose Yao-Based Secure Computation in the Online/Offline and Batch Settings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 476–494. Springer, Heidelberg (2014)Google Scholar
  44. 44.
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay: a secure two-party computation system. In: USENIX, p. 20 (2004)Google Scholar
  45. 45.
    Maxwell, G.: Zero knowledge contingent payment (2011), https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
  46. 46.
    Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In: ACM PODC, pp. 12–19 (2003)Google Scholar
  47. 47.
    Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), http://bitcoin.org/bitcoin.pdf
  48. 48.
    Naor, M.: Bit Commitment Using Pseudo-randomness. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, Heidelberg (1990)Google Scholar
  49. 49.
    Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  50. 50.
    Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (FOCS), pp. 162–167. IEEE (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Iddo Bentov
    • 1
  • Ranjit Kumaresan
    • 1
  1. 1.Department of Computer ScienceTechnionHaifaIsrael

Personalised recommendations