International Cryptology Conference

CRYPTO 2014: Advances in Cryptology – CRYPTO 2014 pp 405-420 | Cite as

Feasibility and Infeasibility of Secure Computation with Malicious PUFs

  • Dana Dachman-Soled
  • Nils Fleischhacker
  • Jonathan Katz
  • Anna Lysyanskaya
  • Dominique Schröder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8617)

Abstract

A recent line of work has explored the use of physically uncloneable functions (PUFs) for secure computation, with the goals of (1) achieving universal composability without (additional) setup, and/or (2) obtaining unconditional security (i.e., avoiding complexity-theoretic assumptions). Initial work assumed that all PUFs, even those created by an attacker, are honestly generated. Subsequently, researchers have investigated models in which an adversary can create malicious PUFs with arbitrary behavior. Researchers have considered both malicious PUFs that might be stateful, as well as malicious PUFs that can have arbitrary behavior but are guaranteed to be stateless.

We settle the main open questions regarding secure computation in the malicious-PUF model:
  • We prove that unconditionally secure oblivious transfer is impossible, even in the stand-alone setting, if the adversary can construct (malicious) stateful PUFs.

  • We show that universally composable two-party computation is possible if the attacker is limited to creating (malicious) stateless PUFs. Our protocols are simple and efficient, and do not require any cryptographic assumptions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armknecht, F., Maes, R., Sadeghi, A.R., Standaert, F.X., Wachsmann, C.: A formalization of the security features of physical functions. In: IEEE Symposium on Security and Privacy, pp. 397–412. IEEE Computer Society Press (2011)Google Scholar
  2. 2.
    Barak, B., Mahmoody, M.: Merkle’s key agreement protocol is optimal: An o(n2) attack on any key agreement from a random oracle (2013) (manuscript ), http://www.cs.virginia.edu/~mohammad/files/papers/MerkleFull.pdf
  3. 3.
    Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal—An o(n2)-query attack on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press (1988)Google Scholar
  5. 5.
    Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically uncloneable functions in the universal composition framework. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 51–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd Annual Symposium on Foundations of Computer Science, pp. 136–145. IEEE Computer Society Press (2001)Google Scholar
  7. 7.
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. Journal of Cryptology 19(2), 135–167 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Damgård, I., Scafuro, A.: Unconditionally secure and universally composable commitments from physical assumptions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 100–119. Springer, Heidelberg (2013), http://eprint.iacr.org/2013/108CrossRefGoogle Scholar
  10. 10.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM Press (1987)Google Scholar
  11. 11.
    Goyal, V., Ishai, Y., Mahmoody, M., Sahai, A.: Interactive locking, zero-knowledge pCPs, and unconditional cryptography. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 173–190. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: 21st Annual ACM Symposium on Theory of Computing, pp. 44–61. ACM Press (1989)Google Scholar
  13. 13.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Katzenbeisser, S., Kocabaş, Ü., Rožić, V., Sadeghi, A.-R., Verbauwhede, I., Wachsmann, C.: PUFs: Myth, fact or busted? A security evaluation of physically unclonable functions (PUFs) cast in silicon. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 283–301. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. Journal of Cryptology 22(2), 161–188 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Maes, R., Verbauwhede, I.: Physically unclonable functions: A study on the state of the art and future research directions. In: Towards Hardware-Intrinsic Security, pp. 3–37. Springer (2010)Google Scholar
  18. 18.
    Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable secure computation with (Malicious) physically uncloneable functions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 702–718. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Pappu, R.S.: Physical One-Way Functions. Phd thesis, Massachusetts Institute of Technology (2001)Google Scholar
  20. 20.
    Pappu, R.S., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science 297, 2026–2030 (2002)CrossRefGoogle Scholar
  21. 21.
    Rührmair, U.: Oblivious transfer based on physical unclonable functions. In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 430–440. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Rührmair, U., Katzenbeisser, S., Busch, H.: Strong PUFs: Models, constructions, and security proofs. In: Towards Hardware-Intrinsic Security, pp. 79–96. Springer (2010)Google Scholar
  23. 23.
    van Dijk, M., Rührmair, U.: PUFs in security protocols: attack models and security evaluations. In: IEEE Symposium on Security and Privacy, pp. 286–300. IEEE Computer Society Press (2013)Google Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Dana Dachman-Soled
    • 1
  • Nils Fleischhacker
    • 2
  • Jonathan Katz
    • 1
  • Anna Lysyanskaya
    • 3
  • Dominique Schröder
    • 2
  1. 1.University of MarylandCollege ParkUSA
  2. 2.Saarland UniversitySaarbrückenGermany
  3. 3.Brown UniversityProvidenceUSA

Personalised recommendations