Advertisement

Secure Multi-Party Computation with Identifiable Abort

  • Yuval Ishai
  • Rafail Ostrovsky
  • Vassilis Zikas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8617)

Abstract

Protocols for secure multi-party computation (MPC) that resist a dishonest majority are susceptible to “denial of service” attacks, allowing even a single malicious party to force the protocol to abort. In this work, we initiate a systematic study of the more robust notion of security with identifiable abort, which leverages the effect of an abort by forcing, upon abort, at least one malicious party to reveal its identity.

We present the first information-theoretic MPC protocol which is secure with identifiable abort (in short ID-MPC) using a correlated randomness setup. This complements a negative result of Ishai et al. (TCC 2012) which rules out information-theoretic ID-MPC in the OT-hybrid model, thereby showing that pairwise correlated randomness is insufficient for information-theoretic ID-MPC.

In the standard model (i.e., without a correlated randomness setup), we present the first computationally secure ID-MPC protocol making black-box use of a standard cryptographic primitive, namely an (adaptively secure) oblivious transfer (OT) protocol. This provides a more efficient alternative to existing ID-MPC protocols, such as the GMW protocol, that make a non-black-box use of the underlying primitives.

As a theoretically interesting sidenote, our black-box ID-MPC provides an example for a natural cryptographic task that can be realized using a black-box access to an OT protocol but cannot be realized unconditionally using an ideal OT oracle.

Keywords

Correlate Randomness Random String Oblivious Transfer Secure Multiparty Computation Common Reference String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure multiparty computation without honest majority and the best of both worlds. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non- cryptographic fault-tolerant distributed computations. In: 20th ACM STOC, pp. 1–10. ACM Press (1988)Google Scholar
  3. 3.
    Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13(1), 143–202 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)Google Scholar
  6. 6.
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two- party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503. ACM Press (2002)Google Scholar
  8. 8.
    Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: 20th ACM STOC, pp. 11–19. ACM Press (1988)Google Scholar
  10. 10.
    Choi, S.G., Katz, J., Wee, H., Zhou, H.-S.: Efficient, adaptively secure, and composable oblivious transfer with a single, global CRS. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 73–88. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, Black-Box Constructions of Adaptively Secure Protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Cleve, R.: Limits on the Security of Coin Flips when Half the Processors Are Faulty. In: 18th STOC, pp. 364–369 (1986)Google Scholar
  13. 13.
    Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Damgård, I., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implementing AES via an actively/Covertly secure dishonest-majority MPC protocol. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 241–263. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: MiniLEGO: Efficient secure two-party computation from general assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–556. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  21. 21.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press (1987)Google Scholar
  22. 22.
    Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Goyal, V., Lee, C.-K., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: A black-box approach. In: 53rd FOCS, pp. 51–60. IEEE Computer Society (2012)Google Scholar
  24. 24.
    Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-Box Constructions of Protocols for Secure Computation. SIAM J. Comput. 40(2), 225–266 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in perfect multiparty computation. Journal of Cryptology 13(1), 31–60 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hirt, M., Maurer, U.M., Zikas, V.: MPC vs. SFE: Unconditional and computational security. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 1–18. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Impagliazzo, R., Luby, M.: One-way functions are essential for complexity-based cryptography. In: 30th FOCS, pp. 230–235. IEEE Computer Society Press (1989)Google Scholar
  28. 28.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with guaranteed output delivery in secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press (2007)Google Scholar
  31. 31.
    Ishai, Y., Ostrovsky, R., Seyalioglu, H.: Identifying cheaters without an honest majority. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 21–38. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. 33.
    Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  34. 34.
    Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure MPC with dishonest majority. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) 20th ACM CCS, pp. 549–560. ACM Press (2013)Google Scholar
  35. 35.
    Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols and security under composition. In: Kleinberg, J.M. (ed.) 38th ACM STOC, pp. 109–118. ACM Press (2006)Google Scholar
  36. 36.
    Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  37. 37.
    Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.: Fairness with an honest minority and a rational majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 36–53. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  38. 38.
    Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  39. 39.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  40. 40.
    Pfitzmann, B., Waidner, M.: Unconditional byzantine agreement for any number of faulty processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 337–350. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  41. 41.
    Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical Report TR-81, Aiken Computation Lab, Harvard University (1981), http://eprint.iacr.org/2005/187
  42. 42.
    Rabin, T., Ben-Or, M.: Veri able secret sharing and multiparty protocols with honest majority. In: 21st ACM STOC, pp. 73–85. ACM Press (1989)Google Scholar
  43. 43.
    Seito, T., Aikawa, T., Shikata, J., Matsumoto, T.: Information-theoretically secure key-insulated multireceiver authentication codes. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 148–165. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  44. 44.
    Seyalioglu, H.: Reducing Trust When Trust is Essential. PhD thesis, UCLA (2012)Google Scholar
  45. 45.
    Shikata, J., Hanaoka, G., Zheng, Y., Imai, H.: Security notions for unconditionally secure signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 434–449. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  46. 46.
    Swanson, C., Stinson, D.R.: Unconditionally secure signature schemes revisited. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 100–116. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  47. 47.
    Yao, A.C.: Protocols for secure computations. In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press (1982)Google Scholar
  48. 48.
    Zikas, V., Hauser, S., Maurer, U.: Realistic failures in secure multi-party computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 274–293. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Yuval Ishai
    • 1
  • Rafail Ostrovsky
    • 2
  • Vassilis Zikas
    • 3
  1. 1.Computer Science DepartmentTechnionHaifaIsrael
  2. 2.Computer Science DepartmentUCLALos AngelesUSA
  3. 3.Computer Science DepartmentETH ZurichSwitzerland

Personalised recommendations