International Cryptology Conference

CRYPTO 2014: Advances in Cryptology – CRYPTO 2014 pp 1-18 | Cite as

Quantum Position Verification in the Random Oracle Model

  • Dominique Unruh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8617)

Abstract

We present a quantum position verification scheme in the random oracle model. In contrast to prior work, our scheme does not require bounded storage/retrieval/entanglement assumptions. We also give an efficient position-based authentication protocol. This enables secret and authenticated communication with an entity that is only identified by its position in space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashby, N.: General relativity in the global positioning system. Matters of Gravity (newsletter of the Topical Group in Gravitation of the APS), 9 (1997), http://www.phys.lsu.edu/mog/mog9/node9.html (accessed: February 07, 2014) (Archived by WebCite at http://www.webcitation.org/6ND19QXJ3)
  2. 2.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Science of Computer Programming 72(1-2), 3–21 (2008), http://bugseng.com/products/ppl/MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Buhrman, H., Chandran, N., Fehr, S., Gelles, R., Goyal, V., Ostrovsky, R., Schaffner, C.: Position-based quantum cryptography: Impossibility and constructions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 429–446. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptography. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Kaniewski, J., Tomamichel, M., Hänggi, E., Wehner, S.: Secure bit commitment from relativistic constraints. IEEE Trans. on Inf. Theory 59(7), 4687–4699 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kent, A.: Unconditionally secure bit commitment by transmitting measurement outcomes. Phys. Rev. Lett. 109(13), 130501 (2012)CrossRefGoogle Scholar
  8. 8.
    Kent, A., Munro, W.J., Spiller, T.P.: Quantum tagging: Authenticating location via quantum information and relativistic signaling constraints. Phys. Rev. A 84, 012326 (2011)Google Scholar
  9. 9.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 10th anniversary edn. Cambridge University Press, Cambridge (2010)Google Scholar
  10. 10.
    Stein, W., et al.: Sage Mathematics Software (Version 5.12). The Sage Development Team (2014), http://www.sagemath.org
  11. 11.
    Tomamichel, M., Fehr, S., Kaniewski, J., Wehner, S.: One-sided device-independent QKD and position-based cryptography from monogamy games. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 609–625. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Unruh, D.: Quantum position verification in the random oracle model. IACR ePrint 2014/118, Full version of this paper (February 2014), http://eprint.iacr.org/2014/118
  13. 13.
    Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 758–775. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Dominique Unruh
    • 1
  1. 1.University of TartuTartuEstonia

Personalised recommendations