International Cryptology Conference

CRYPTO 2014: Advances in Cryptology – CRYPTO 2014 pp 462-479 | Cite as

On the Impossibility of Cryptography with Tamperable Randomness

  • Per Austrin
  • Kai-Min Chung
  • Mohammad Mahmoody
  • Rafael Pass
  • Karn Seth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8616)

Abstract

We initiate a study of the security of cryptographic primitives in the presence of efficient tampering attacks to the randomness of honest parties. More precisely, we consider p-tampering attackers that may efficiently tamper with each bit of the honest parties’ random tape with probability p, but have to do so in an “online” fashion. Our main result is a strong negative result: We show that any secure encryption scheme, bit commitment scheme, or zero-knowledge protocol can be “broken” with probability p by a p-tampering attacker.The core of this result is a new Fourier analytic technique for biasing the output of bounded-value functions, which may be of independent interest.

We also show that this result cannot be extended to primitives such as signature schemes and identification protocols: assuming the existence of one-way functions, such primitives can be made resilient to (1/poly(n))-tampering attacks where n is the security parameter.

Keywords

Tampering Randomness Encryption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    One, A.: Smashing the stack for fun and profit. Phrack Magazine 7(49), File 14 (1996)Google Scholar
  3. 3.
    Anderson, R., Kuhn, M.: Tamper resistance – a cautionary note. In: Proceedings of the Second USENIX Workshop on Electronic Commerce, pp. 1–11 (November 1996)Google Scholar
  4. 4.
    Austrin, P., Chung, K.-M., Mahmoody, M., Pass, R., Seth, K.: On the impossibility of cryptography with tamperable randomness. Cryptology ePrint Archive, Report 2013/194 (2013), http://eprint.iacr.org/
  5. 5.
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In: FOCS, pp. 501–510. IEEE Computer Society (2010)Google Scholar
  8. 8.
    Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge (extended abstract). In: STOC, pp. 235–244 (2000)Google Scholar
  9. 9.
    Choi, S.G., Kiayias, A., Malkin, T.: BiTR: Built-in tamper resilience. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 740–758. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Dachman-Soled, D., Kalai, Y.T.: Securing circuits against constant-rate tampering. IACR Cryptology ePrint Archive, 2012:366 (2012); Informal publicationGoogle Scholar
  11. 11.
    Dodis, Ong, Prabhakaran, Sahai: On the (im)possibility of cryptography with imperfect randomness. In: FOCS: IEEE Symposium on Foundations of Computer Science, FOCS (2004)Google Scholar
  12. 12.
    Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: FOCS, pp. 511–520. IEEE Computer Society (2010)Google Scholar
  14. 14.
    Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–302. IEEE Computer Society (2008)Google Scholar
  15. 15.
    Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.-C. (ed.) ICS, pp. 434–452. Tsinghua University Press (2010)Google Scholar
  16. 16.
    Faust, S., Pietrzak, K., Venturi, D.: Tamper-proof circuits: How to trade leakage for tamper-resilience. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 391–402. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Ariel, J.: Feldman and Josh Benaloh. On subliminal channels in encrypt-on-cast voting systems. In: Proceedings of the 2009 Conference on Electronic Voting Technology/Workshop on Trustworthy Elections, EVT/WOTE 2009, p. 12. USENIX Association, Berkeley (2009)Google Scholar
  18. 18.
    Frykholm, N.: Countermeasures against buffer overflow attacks. Technical report, RSA Data Security, Inc., pub-RSA:adr (November 2000)Google Scholar
  19. 19.
    Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic tamper-proof (atp) security: Theoretical foundations for security against hardware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. Journal of Cryptology 7(1), 1–32 (1994)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Goldwasser, S., Rothblum, G.: How to compute in the presence of leakage (2012)Google Scholar
  22. 22.
    Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and Qs: Detection of widespread weak keys in network devices. In: Proceedings of the 21st USENIX Security Symposium (August 2012)Google Scholar
  23. 23.
    Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography. In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS), pp. 230–235 (1989)Google Scholar
  24. 24.
    Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Kalai, Y., Lewko, A., Rao, A.: Formulas resilient to short-circuit errors (2012)Google Scholar
  26. 26.
    Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.: Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 626–642. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.: Ron was wrong, whit is right. Cryptology ePrint Archive, Report 2012/064 (2012), http://eprint.iacr.org/
  29. 29.
    Liu, F.-H., Lysyanskaya, A.: Algorithmic tamper-proof security under probing attacks. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 106–120. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–532. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  31. 31.
    Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Pincus, J.D., Baker, B.: Beyond stack smashing: Recent advances in exploiting buffer overruns. IEEE Security & Privacy 2(4), 20–27 (2004)CrossRefGoogle Scholar
  33. 33.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Rothblum, G.N.: How to compute under \({\cal{AC}}^{\sf0}\) leakage without secure hardware. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 552–569. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  35. 35.
    Santha, M., Vazirani, U.V.: Generating quasi-random sequences from semi-random sources. J. Comput. Syst. Sci. 33(1), 75–87 (1986)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Simmons, G.J.: Subliminal channels; past and present. ETT 5(4), 15 (1994)Google Scholar
  37. 37.
    Young, A., Yung, M.: The dark side of “Black-box” cryptography, or: Should we trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103. Springer, Heidelberg (1996)Google Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Per Austrin
    • 1
  • Kai-Min Chung
    • 2
  • Mohammad Mahmoody
    • 3
  • Rafael Pass
    • 4
  • Karn Seth
    • 4
  1. 1.KTH Royal Institute of TechnologyStockholmSweden
  2. 2.Academica SinicaTaipeiTaiwan
  3. 3.University of VirginiaCharlottesvilleUSA
  4. 4.Cornell UniversityNew YorkUSA

Personalised recommendations