Advertisement

Structure-Preserving Signatures from Type II Pairings

  • Masayuki Abe
  • Jens Groth
  • Miyako Ohkubo
  • Mehdi Tibouchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8616)

Abstract

We investigate structure-preserving signatures in asymmetric bilinear groups with an efficiently computable homomorphism from one source group to the other, i.e., the Type II setting. It has been shown that in the Type I and Type III settings, structure-preserving signatures need at least 2 verification equations and 3 group elements. It is therefore natural to conjecture that this would also be required in the intermediate Type II setting, but surprisingly this turns out not to be the case. We construct structure-preserving signatures in the Type II setting that only require a single verification equation and consist of only 2 group elements. This shows that the Type II setting with partial asymmetry is different from the other two settings in a way that permits the construction of cryptographic schemes with unique properties.

We also investigate lower bounds on the size of the public verification key in the Type II setting. Previous work on structure-preserving signatures has explored lower bounds on the number of verification equations and the number of group elements in a signature but the size of the verification key has not been investigated before.We show that in the Type II setting it is necessary to have at least 2 group elements in the public verification key in a signature scheme with a single verification equation.

Our constructions match the lower bounds so they are optimal with respect to verification complexity, signature sizes and verification key sizes. In fact, in terms of verification complexity, they are the most efficient structure preserving signature schemes to date.

We give two structure-preserving signature schemes with a single verification equation where both the signatures and the public verification keys consist of two group elements each. One signature scheme is strongly existentially unforgeable, the other is fully randomizable. Having such simple and elegant structure-preserving signatures may make the Type II setting the easiest to use when designing new structure-preserving cryptographic schemes, and lead to schemes with the greatest conceptual simplicity.

Keywords

Structure-preserving signatures Type II pairings strong existential unforgeability randomizability lower bounds 

References

  1. 1.
    Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-preserving signatures: Generic constructions and simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time signatures: Tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures from type II pairings. Cryptology ePrint Archive, Report 2014/312 (2014), http://eprint.iacr.org/
  7. 7.
    Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Neven, G.: Oblivious transfer with hidden access control from attribute-based encryption. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 559–579. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Cathalo, J., Libert, B., Yung, M.: Group encryption: Non-interactive realization in the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 179–196. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric pairings — The role of Ψ revisited. Discrete Applied Mathematics 159(13), 1311–1322 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Fuchsbauer, G., Vergnaud, D.: Fair blind signatures without random oracles. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 16–33. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–Sahai proofs revisited. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput. 41(5), 1193–1232 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in very small characteristic. IACR ePrint Archive, Report 2013/095 (2013), http://eprint.iacr.org/
  25. 25.
    Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–589. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Van de Woestijne, C.E.: Deterministic equation solving over finite fields. PhD thesis, Leiden University (2006)Google Scholar
  28. 28.
    Zhang, J., Li, Z., Guo, H.: Anonymous transferable conditional E-cash. In: Keromytis, A.D., Di Pietro, R. (eds.) SecureComm 2012. LNICST, vol. 106, pp. 45–60. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Masayuki Abe
    • 1
  • Jens Groth
    • 2
  • Miyako Ohkubo
    • 3
  • Mehdi Tibouchi
    • 1
  1. 1.NTT Secure Platform LaboratoriesJapan
  2. 2.University College LondonUK
  3. 3.Security Fundamentals Lab, NSRI, NICTJapan

Personalised recommendations