Advertisement

Homomorphic Signatures with Efficient Verification for Polynomial Functions

  • Dario Catalano
  • Dario Fiore
  • Bogdan Warinschi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8616)

Abstract

A homomorphic signature scheme for a class of functions \(\mathcal{C}\) allows a client to sign and upload elements of some data set D on a server. At any later point, the server can derive a (publicly verifiable) signature that certifies that some y is the result computing some \(f\in\mathcal{C}\) on the basic data set D. This primitive has been formalized by Boneh and Freeman (Eurocrypt 2011) who also proposed the only known construction for the class of multivariate polynomials of fixed degree d ≥ 1. In this paper we construct new homomorphic signature schemes for such functions. Our schemes provide the first alternatives to the one of Boneh-Freeman, and improve over their solution in three main aspects. First, our schemes do not rely on random oracles. Second, we obtain security in a stronger fully-adaptive model: while the solution of Boneh-Freeman requires the adversary to query messages in a given data set all at once, our schemes can tolerate adversaries that query one message at a time, in a fully-adaptive way. Third, signature verification is more efficient (in an amortized sense) than computing the function from scratch. The latter property opens the way to using homomorphic signatures for publicly-verifiable computation on outsourced data. Our schemes rely on a new assumption on leveled graded encodings which we show to hold in a generic model.

References

  1. 1.
    Agrawal, S., Boneh, D.: Homomorphic mACs: MAC-based integrity for network coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 863–874. ACM Press (November 2013)Google Scholar
  5. 5.
    Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J., Scedrov, A., Schmidt, B.: Automated analysis of cryptographic assumptions in generic group models. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 95–112. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111–120. ACM Press (June 2013)Google Scholar
  8. 8.
    Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Catalano, D., Fiore, D.: Practical homomorphic mACs for arithmetic circuits. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 336–352. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Catalano, D., Fiore, D., Gennaro, R., Nizzardo, L.: Generalizing homomorphic mACs for arithmetic circuits. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 538–555. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  12. 12.
    Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-way functions and their applications. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 680–699. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applications. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Chung, K.-M., Kalai, Y., Vadhan, S.P.: Improved delegation of computation using fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix computations, with applications. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 501–512. ACM Press (October 2012)Google Scholar
  19. 19.
    Freeman, D.M.: Improved security for linearly homomorphic signatures: A generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct nIZKs without pCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 142–160. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301–320. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Langlois, A., Stehle, D., Steinfeld, R.: GGHLite: More efficient multilinear maps from ideal lattices. In: Advances in Cryptology – Eurocrypt 2014. Springer, Heidelberg (2014)Google Scholar
  26. 26.
    Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: Verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Dario Catalano
    • 1
  • Dario Fiore
    • 2
  • Bogdan Warinschi
    • 3
  1. 1.Università di CataniaItaly
  2. 2.IMDEA Software InstituteSpain
  3. 3.University of BristolUK

Personalised recommendations