An Interface for Fitness Function Design

  • Penousal Machado
  • Tiago Martins
  • Hugo Amaro
  • Pedro H. Abreu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8601)

Abstract

Fitness assignment is one of the biggest challenges in evolutionary art. Interactive evolutionary computation approaches put a significant burden on the user, leading to human fatigue. On the other hand, autonomous evolutionary art systems usually fail to give the users the opportunity to express and convey their artistic goals and preferences. Our approach empowers the users by allowing them to express their intentions through the design of fitness functions. We present a novel responsive interface for designing fitness function in the scope of evolutionary ant paintings. Once the evolutionary runs are concluded, further control is given to the users by allowing them to specify the rendering details of selected pieces. The analysis of the experimental results highlights how fitness function design influences the outcomes of the evolutionary runs, conveying the intentions of the user and enabling the evolution of a wide variety of images.

Keywords

Ant Paintings Fitness Function Autonomous Evolutionary Art 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aupetit, S., Bordeau, V., Monmarché, N., Slimane, C., Venturini, G.: Interactive Evolution of Ant Paintings. In: IEEE Congress on Evolutionary Computation, Canberra, December 8-12, vol. 2, pp. 1376–1383 (2003)Google Scholar
  2. 2.
    Collomosse, J.P.: Supervised genetic search for parameter selection in painterly rendering. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 599–610. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Ekárt, A., Sharma, D., Chalakov, S.: Modelling human preference in evolutionary art. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 303–312. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Fernandes, C.M., Isidoro, C., Barata, F., Rosa, A.C., Guervós, J.J.M.: From pherographia to color pherographia: Color sketching with artificial ants. In: IEEE Congress on Evolutionary Computation. pp. 1124–1131 (2011)Google Scholar
  5. 5.
    Greenfield, G.: Evolutionary methods for ant colony paintings. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 478–487. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Greenfield, G.: Ant Paintings using a Multiple Pheromone Model. In: Bridges, London, England (2006)Google Scholar
  7. 7.
    Hewgill, A., Ross, B.J.: Procedural 3d texture synthesis using genetic programming. Computers and Graphics 28, 569–584 (2003)CrossRefGoogle Scholar
  8. 8.
    Karperien, A.: Fraclac for imagej, version 2.5 (2012), http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm
  9. 9.
    Lewis, M.: Aesthetic video filter evolution in an interactive real-time framework. In: Raidl, G.R., et al. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 409–418. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Machado, P., Dias, A., Cardoso, A.: Learning to colour greyscale images. The Interdisciplinary Journal of Artificial Intelligence and the Simulation of Behaviour – AISB Journal 1(2), 209–219 (2002)Google Scholar
  11. 11.
    Machado, P., Amaro, H.: Fitness functions for ant colony paintings. In: Proceedings of the 4th International Conference on Computational Creativity, pp. 32–39 (2013)Google Scholar
  12. 12.
    Machado, P., Pereira, L.: Photogrowth: non-photorealistic renderings through ant paintings. In: Soule, T., Moore, J.H. (eds.) Genetic and Evolutionary Computation Conference, Philadelphia, PA, USA, July 7-11, pp. 233–240. ACM (2012)Google Scholar
  13. 13.
    McCormack, J.: Facing the future: Evolutionary possibilities for human-machine creativity. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 417–451. Springer (2007)Google Scholar
  14. 14.
    Monmarché, N., Mahnich, I., Slimane, M.: Artificial art made by artificial ants. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 227–247. Springer (2007)Google Scholar
  15. 15.
    Neufeld, C., Ross, B., Ralph, W.: The evolution of artistic filters. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 335–356. Springer (2007)Google Scholar
  16. 16.
    Perlin, K.: An image synthesizer. In: Cole, P., Heilman, R., Barsky, B.A. (eds.) Proceedings of the 12st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1985, pp. 287–296. ACM (1985)Google Scholar
  17. 17.
    Ramos, V.: On the implicit and on the artificial - morphogenesis and emergent aesthetics in autonomous collective systems. In: ARCHITOPIA Book, Art, Architecture and Science, pp. 25–57 (2002)Google Scholar
  18. 18.
    Ramos, V., Almeida, F.: Artificial ant colonies in digital image habitats - a mass behaviour effect study on pattern recognition. In: From Ant Colonies to Artificial Ants - 2 nd Int. Wkshp on Ant Algorithms, pp. 113–116 (2000)Google Scholar
  19. 19.
    Ross, B.J., Ralph, W., Hai, Z.: Evolutionary image synthesis using a model of aesthetics. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation, pp. 1087–1094. IEEE Press, Vancouver (2006)CrossRefGoogle Scholar
  20. 20.
    Schlechtweg, S., Germer, T., Strothotte, T.: Renderbots – multi agent systems for direct image generation. Computer Graphics Forum 24(2), 283–290 (2005)CrossRefGoogle Scholar
  21. 21.
    Semet, Y., O’Reilly, U.M., Durand, F.: An interactive artificial ant approach to non-photorealistic rendering. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 188–200. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Tzafestas, E.: Integrating drawing tools with behavioral modeling in digital painting. In: Ghandeharizadeh, S., Chang, S.F., Fischer, S., Konstan, J.A., Nahrstedt, K. (eds.) ACM Multimedia Workshops, pp. 39–42. ACM Press (2000)Google Scholar
  23. 23.
    Urbano, P.: Playing in the pheromone playground: Experiences in swarm painting. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 527–532. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Urbano, P.: The t. albipennis sand painting artists. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 414–423. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Yip, C.: Evolving Image Filters. Master’s thesis, Imperial College of Science, Technology, and Medicine (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Penousal Machado
    • 1
  • Tiago Martins
    • 1
  • Hugo Amaro
    • 1
  • Pedro H. Abreu
    • 1
  1. 1.CISUC, Department of Informatics EngineeringUniversity of CoimbraCoimbraPortugal

Personalised recommendations