Evolving an Aircraft Using a Parametric Design System

  • Jonathan Byrne
  • Philip Cardiff
  • Anthony Brabazon
  • Michael O’Neill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8601)


Traditional CAD tools generate a static solution to a design problem. Parametric systems allow the user to explore many variations on that design theme. Such systems make the computer a generative design tool and are already used extensively as a rapid prototyping technique in architecture and aeronautics. Combining a design generation tool with an evolutionary algorithm provides a methodology for optimising designs. This works uses NASA’s parametric aircraft design tool (OpenVSP) and an evolutionary algorithm to evolve a range of aircraft that maximise lift and reduce drag while remaining within the framework of the original design. Our approach allows the designer to automatically optimise their chosen design and to generate models with improved aerodynamic efficiency.


Computational Fluid Dynamics Evolutionary Algorithm Pareto Front Multidisciplinary Design Optimization Computational Fluid Dynamics Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpman, E.: Airfoil shape optimization using evolutionary algorithms. Aerospace Engineering Department, Pennstate University (2004)Google Scholar
  2. 2.
    Bensow, R.E., Bark, G.: Simulating cavitating flows with les in openfoam. In: V European Conference on Computational Fluid Dynamics, pp. 14–17 (2010)Google Scholar
  3. 3.
    Bollinger, K., Grohmann, M., Tessman, O.: Form, force, performance: Multi-parametric structural design. Architectural Design 78(2), 20–25 (2008)CrossRefGoogle Scholar
  4. 4.
    Cardiff, P., Karač, A., Ivanković, A.: A large strain finite volume method for orthotropic bodies with general material orientations. In: Computer Methods in Applied Mechanics and Engineering (2013)Google Scholar
  5. 5.
    Day, M.: Grasshopper, generative modelling (2010),
  6. 6.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002) ISSN 1089-778XCrossRefGoogle Scholar
  7. 7.
    Dulikravich, G.S.: Aerodynamic shape design and optimization-status and trends. Journal of Aircraft 29(6), 1020–1026 (1992)CrossRefGoogle Scholar
  8. 8.
    Gloudemans, J.R., Davis, P.C., Gelhausen, P.A.: A rapid geometry modeler for conceptual aircraft. In: 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, January, pp. 15–18 (1996)Google Scholar
  9. 9.
    Holzer, D., Hough, R., Burry, M.: Parametric design and structural optimisation for early design exploration. International Journal of Architectural Computing 5(4), 625–643 (2007)CrossRefGoogle Scholar
  10. 10.
    Jacobs, E.N., Ward, K.E., Pinkerton, R.M.: The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel. Technical report, DTIC Document (1933)Google Scholar
  11. 11.
    Kicinger, R., Arciszewski, T., De Jong, K.: Evolutionary computation and structural design: A survey of the state-of-the-art. Computers and Structures 83(23-24), 1943–1978 (2005), ISSN 0045-7949, doi: 10.1016/j.compstruc.2005.03.002Google Scholar
  12. 12.
    Andy Ko, Y.-Y.: The multidisciplinary design optimization of a distributed propulsion blended-wing-body aircraft. PhD thesis, Virginia Polytechnic Institute and State University (2003)Google Scholar
  13. 13.
    Lawson, B.: How designers think: the design process demystified. Elsevier/Architectural (2006), ISBN 9780750660778,
  14. 14.
    Naujoks, B., Willmes, L., Haase, W., Bäck, T., Schütz, M.: Multi-point airfoil optimization using evolution strategies. In: Proc. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2000)(CD-Rom and Book of Abstracts), p. 948 (2000)Google Scholar
  15. 15.
    Obayashi, S.: Multidisciplinary design optimization of aircraft wing planform based on evolutionary algorithms. In: 1998 IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, pp. 3148–3153. IEEE (1998)Google Scholar
  16. 16.
    Parmee, I.C., Watson, A.H.: Preliminary airframe design using co-evolutionary multiobjective genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1657–1665 (1999)Google Scholar
  17. 17.
    Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer 15(10), 1787–1806 (1972),, doi:, ISSN 0017-9310
  18. 18.
    Quagliarella, D., D’ambrosio, D., Iollo, A.: Airfoil design using navier-stokes equations and hybrid evolutionary optimization techniques. Technical report, DTIC Document (2003)Google Scholar
  19. 19.
    Rogalsky, T., Derksen, R.W., Kocabiyik, S.: An aerodynamic design technique for optimizing fan blade spacing. In: Proceedings of the 7th Annual Conference of the Computational Fluid Dynamics Society of Canada, pp. 2–29. Citeseer (1999)Google Scholar
  20. 20.
    Shea, K., Aish, R., Gourtovaia, M.: Towards integrated performance-driven generative design tools. Automation in Construction 14(2), 253–264 (2005) ISSN 0926-5805Google Scholar
  21. 21.
    Simon, H.A.: The sciences of the artificial. The MIT Press (1996)Google Scholar
  22. 22.
    Oasys Software. GSA, structural analysis version 8.5 (2011),
  23. 23.
    Bentley Sytems. Generative components, v8i (2011),
  24. 24.
    Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12, 620 (1998)CrossRefGoogle Scholar
  25. 25.
    Wüthrich, B., Lee, Y.: Simulation and validation of compressible flow in nozzle geometries and validation of OpenFOAM for this application. PhD thesis, ETH, Swiss Federal Institute of Technology Zurich, Institute of Fluid Dynamics (2007)Google Scholar
  26. 26.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jonathan Byrne
    • 1
  • Philip Cardiff
    • 1
  • Anthony Brabazon
    • 1
  • Michael O’Neill
    • 1
  1. 1.Natural Computing Research & Applications GroupUniversity College DublinIreland

Personalised recommendations