Wild Accessions and Mutant Resources

Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Lotus japonicus, Lotus burttii, and Lotus filicaulis are species of Lotus genus that are utilized for molecular genetic analysis such as the construction of a linkage map and QTL analysis. Among them, a number of mutants have been isolated from two wild accessions: L. japonicus Gifu B-129 and Miyakojima MG-20. Here, we show the wild accessions and a list of all mutants isolated so far.

References

  1. Barykina RP, Kramina TE (2006) A comparative morphological and anatomical study of the model legume Lotus japonicus and related species. Wulfenia 13:33–56Google Scholar
  2. Betti M, Arcondeguy T, Marquez AJ (2006) Molecular analysis of two mutants from Lotus japonicus deficient in plastidic glutamine synthetase: functional properties of purified GLN2 enzymes. Planta 224:1068–1079PubMedCrossRefGoogle Scholar
  3. Bonfante P, Genre A, Faccio A et al (2000) The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells. Mol Plant Microbe Interact 13:1109–1120PubMedCrossRefGoogle Scholar
  4. Borsos O, Somaroo BH, Grant WF (1972) A new diploid species of Lotus (Leguminosae) in Pakistan. Can J Bot 50:1865–1870CrossRefGoogle Scholar
  5. Chen JH, Pang JL, Wang LL et al (2006) Wrinkled petals and stamens 1, is required for the morphogenesis of petals and stamens in Lotus japonicus. Cell Res 16:499–506PubMedCrossRefGoogle Scholar
  6. Chen T, Zhu H, Ke DX et al (2012) A MAP kinase kinase interacts with SymRK and regulates nodule organogenesis in Lotus japonicus. Plant Cell 24:823–838PubMedCrossRefPubMedCentralGoogle Scholar
  7. de Alvarez NDG, Meeking RJ, White DWR et al (2006) The origin, initiation and development of axillary shoot meristems in Lotus japonicus. Ann Bot 98:953–963Google Scholar
  8. Dong ZC, Zhao Z, Liu CW et al (2005) Floral patterning in Lotus japonicus. Plant Physiol 137:1272–1282PubMedCrossRefPubMedCentralGoogle Scholar
  9. Feng XZ, Zhao Z, Tian ZX et al (2006) Control of petal shape and floral zygomorphy in Lotus japonicus. Proc Natl Acad Sci USA 103:4970–4975PubMedCrossRefPubMedCentralGoogle Scholar
  10. García-Calderón M, Chiurazzi M, Espuny MR et al (2012) Photorespiratory metabolism and nodule function: behavior of Lotus japonicus mutants deficient in plastid glutamine synthetase. Mol Plant Microbe Interact 25:211–219PubMedCrossRefGoogle Scholar
  11. Grant WF, Bullen MR, de Nettancourt D (1962) The cytognetics of Lotus. I Embryo-cultured interspecific diploid hybrids closely related to L. corniculatus L. Can J Genet Cytol 4:105–128Google Scholar
  12. Groth M, Takeda N, Perry J et al (2010) NENA, a Lotus japonicus homolog of Sec13, is required for Rhizodermal infection by Arbuscular Mycorrhiza Fungi and Rhizobia but dispensable for cortical endosymbiotic development. Plant Cell 22:2509–2526PubMedCrossRefPubMedCentralGoogle Scholar
  13. Groth M, Kosuta S, Gutjahr C et al (2013) Two Lotus japonicus symbiosis mutants impaired at distinct steps of arbuscule development. Plant J 75:117–129PubMedCrossRefGoogle Scholar
  14. Hakoyama T, Niimi K, Watanabe H et al (2009) Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation. Nature 462:514–517PubMedCrossRefGoogle Scholar
  15. Hakoyama T, Niimi K, Yamamoto T et al (2012a) The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. Plant Cell Physiol 53:225–236PubMedCrossRefGoogle Scholar
  16. Hakoyama T, Oi R, Hazuma K et al (2012b) The SNARE Protein SYP71 expressed in vascular tissues is involved in symbiotic nitrogen fixation in Lotus japonicus nodules. Plant Physiol 160:897–905PubMedCrossRefPubMedCentralGoogle Scholar
  17. Hayashi M, Miyahara A, Sato S et al (2001) Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Res 8:301–310PubMedCrossRefGoogle Scholar
  18. Heckmann AB, Lombardo F, Miwa H et al (2006) Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol 142:1739–1750PubMedCrossRefPubMedCentralGoogle Scholar
  19. Horst I, Welham T, Kelly S et al (2007) TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase. Plant Physiol 144:806–820PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hossain MS, Umehara Y, Kouchi H (2006) A novel Fix(−) symbiotic mutant of Lotus japonicus, Ljsym105, shows impaired development and premature deterioration of nodule infected cells and symbiosomes. Mol Plant Microbe Interact 19:780–788PubMedCrossRefGoogle Scholar
  21. Hossain MS, Liao JQ, James EK et al (2012) Lotus japonicus ARPC1 is required for rhizobial infection. Plant Physiol 160:917–928PubMedCrossRefPubMedCentralGoogle Scholar
  22. Imaizumi-Anraku H, Kawaguchi M, Koiwa H et al (1997) Two ineffective-nodulating mutants of Lotus japonicus—Different phenotypes caused by the blockage of endocytotic bacterial release and nodule maturation. Plant Cell Physiol 38:871–881CrossRefGoogle Scholar
  23. Imaizumi-Anraku H, Takeda N, Charpentier M et al (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531PubMedCrossRefGoogle Scholar
  24. Kanamori N, Madsen LH, Radutoiu S et al (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci USA 103:359–364PubMedCrossRefPubMedCentralGoogle Scholar
  25. Karas B, Murray J, Gorzelak M et al (2005) Invasion of Lotus japonicus root hairless 1 by Mesorhizobium loti involves the nodulation factor-dependent induction of root hairs. Plant Physiol 137:1331–1344PubMedCrossRefPubMedCentralGoogle Scholar
  26. Karas B, Amyot L, Johansen C et al (2009) Conservation of Lotus and Arabidopsis basic helix-loop-helix proteins reveals new players in root hair development. Plant Physiol 151:1175–1185PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kawaguchi M (2000) Lotus japonicus “Miyakojima” MG-20: an early flowering accession suitable for indoor handling. J Plant Res 113:507–509CrossRefGoogle Scholar
  28. Kawaguchi M (2003) SLEEPLESS, a gene conferring nyctinastic movement in legume. J Plant Res 116:151–154PubMedGoogle Scholar
  29. Kawaguchi M, Imaizumi-Anraku H, Koiwa H et al (2002) Root, root hair, and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 15:17–26PubMedCrossRefGoogle Scholar
  30. Kawaguchi M, Pedorosa-Harand A, Yano K et al (2005) Lotus burttii take a position of the third corner in the Lotus molecular genetics triangle. DNA Res 12:69–77PubMedCrossRefGoogle Scholar
  31. Kistner C, Winzer T, Pitzschke A et al (2005a) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kistner C, Winzer T, Pitzschke A et al (2005b) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229PubMedCrossRefPubMedCentralGoogle Scholar
  33. Kosuta S, Held M, Hossain MS et al (2011) Lotus japonicus symRK-14 uncouples the cortical and epidermal symbiotic program. Plant J 67:929–940PubMedCrossRefGoogle Scholar
  34. Krusell L, Madsen LH, Sato S et al (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420:422–426PubMedCrossRefGoogle Scholar
  35. Krusell L, Krause K, Ott T et al (2005) The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17:1625–1636PubMedCrossRefPubMedCentralGoogle Scholar
  36. Krusell L, Sato N, Fukuhara I et al (2011) The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. Plant J 65:861–871PubMedCrossRefGoogle Scholar
  37. Kumagai H, Hakoyama T, Umehara Y et al (2007) A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus. Plant Physiol 143:1293–1305PubMedCrossRefPubMedCentralGoogle Scholar
  38. Madsen EB, Madsen LH, Radutoiu S et al (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640PubMedCrossRefGoogle Scholar
  39. Maekawa-Yoshikawa M, Muller J, Takeda N (2009) The temperature-sensitive brush mutant of the legume Lotus japonicus reveals a link between root development and nodule infection by rhizobia. Plant Physiol 149:1785–1796PubMedCrossRefPubMedCentralGoogle Scholar
  40. Magori S, Oka-Kira E, Shibata S et al (2009) TOO MUCH LOVE, a root regulator associated with the long-distance control of nodulation in Lotus japonicus. Mol Plant Microbe Interact 22:259–268PubMedCrossRefGoogle Scholar
  41. Miyazawa H, Oka-Kira E, Sato N et al (2010) The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in Lotus japonicus. Development 137:4317–4325PubMedCrossRefGoogle Scholar
  42. Murakami Y, Miwa H, Imaizumi-Anraku H et al (2006) Positional cloning identifies Lotus japonicus NSP2, a putative transcription factor of the GRAS Family, required for NIN and ENOD40 Gene expression in nodule initiation. DNA Res 13:255–265PubMedCrossRefGoogle Scholar
  43. Murray J, Karas B, Ross L et al (2006) Genetic suppressors of the Lotus japonicus har1-1 hypernodulation phenotype. Mol Plant Microbe Interact 19:1082–1091PubMedCrossRefGoogle Scholar
  44. Murray JD, Karas BJ, Sato S et al (2007) A cytokinin perception mutant colonized by rhizobium in the absence of nodule organogenesis. Science 315:101–104PubMedCrossRefGoogle Scholar
  45. Nishimura R, Hayashi M, Wu GJ et al (2002a) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429PubMedCrossRefGoogle Scholar
  46. Nishimura R, Ohmori M, Kawaguchi M (2002b) The novel symbiotic phenotype of enhanced-nodulating mutant of Lotus japonicus: astray mutant is an early nodulating mutant with wider nodulation zone. Plant Cell Physiol 43:853–859PubMedCrossRefGoogle Scholar
  47. Nishimura R, Ohmori M, Fujita H et al (2002c) A Lotus basic leucine zipper protein with a RING-finger motif negatively regulates the developmental program of nodulation. Proc Natl Acad Sci USA 99:15206–15210PubMedCrossRefPubMedCentralGoogle Scholar
  48. Oreo A, Pajuelo P, Pajuelo E et al (2002) Isolation of photorespiratory mutants from Lotus japonicus deficient in glutamine synthetase. Physiol Plant 115:352–361CrossRefGoogle Scholar
  49. Perry JA, Wang TL, Welham TJ et al (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871PubMedCrossRefPubMedCentralGoogle Scholar
  50. Perry J, Brachmann A, Welham T et al (2009) TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methanesulfonate alleles toward glycine replacements. Plant Physiol 151:1281–1291PubMedCrossRefPubMedCentralGoogle Scholar
  51. Radutoiu S, Madsen LH, Madsen EB et al (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592PubMedCrossRefGoogle Scholar
  52. Saito K, Yoshikawa M, Yano K et al (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19:610–624PubMedCrossRefPubMedCentralGoogle Scholar
  53. Sandal N, Krusell L, Radutoiu S et al (2002) A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics 161:1673–1683PubMedPubMedCentralGoogle Scholar
  54. Sandal N, Petersen TR, Murray J et al (2006) Genetics of symbiosis in Lotus japonicus: recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci. Mol Plant Microbe Interact 19:80–91PubMedCrossRefGoogle Scholar
  55. Sandal N, Jin H, Rodriguez-Navarro DN et al (2012) A set of Lotus japonicus gifu x Lotus burttii recombinant inbred lines facilitates map-based cloning and QTL mapping. DNA Res 19:317–323PubMedCrossRefPubMedCentralGoogle Scholar
  56. Schauser K, Handberg N, Sandal J et al (1998) Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol Gen Genet 259:414–423PubMedCrossRefGoogle Scholar
  57. Schauser L, Roussis A, Stiller J et al (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195PubMedCrossRefGoogle Scholar
  58. Senoo K, Solaiman MZ, Kawaguchi M et al (2000) Isolation of two different phenotypes of mycorrhizal mutants in the model legume plant Lotus japonicus after EMS-treatment. Plant Cell Physiol 41:726–732PubMedCrossRefGoogle Scholar
  59. Stracke S, Kistner C, Yoshida S et al (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962PubMedCrossRefGoogle Scholar
  60. Suganuma N, Nakamura Y, Yamamoto M et al (2003) The Lotus japonicus Sen1 gene controls rhizobial differentiation into nitrogen-fixing bacteroids in nodules. Mol Genet Genomics 269:312–320PubMedCrossRefGoogle Scholar
  61. Suzaki T, Yano K, Ito M et al (2012) Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development 139:3997–4006PubMedCrossRefGoogle Scholar
  62. Suzaki T, Kim CS, Takeda N et al (2013) TRICOT encodes an AMP1-related carboxypeptidase that regulates root nodule development and shoot apical meristem maintenance in Lotus japonicus. Development 140:353–361PubMedCrossRefGoogle Scholar
  63. Suzuki A, Suriyagoda L, Shigeyama T et al (2011) Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA) signaling. Proc Natl Acad Sci USA 108:16837–16842PubMedCrossRefPubMedCentralGoogle Scholar
  64. Szczyglowski K, Shaw RS, Wopereis J et al (1998) Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 11:684–697CrossRefGoogle Scholar
  65. Takahara M, Magori S, Soyano T et al (2013) TOO MUCH LOVE, a Novel Kelch repeat-containing F-box Protein, functions in the long-distance regulation of the legume-rhizobium symbiosis. Plant Cell Physiol 54:433–447PubMedCrossRefGoogle Scholar
  66. Takeda N, Tsuzuki S, Suzaki T et al (2013) CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development. Plant Cell Physiol 54:1711–1723PubMedCrossRefGoogle Scholar
  67. Takos A, Lai D, Mikkelsen L et al (2010) Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. Plant Cell 22:1605–1619PubMedCrossRefPubMedCentralGoogle Scholar
  68. Takos AM, Knudsen C, Lai D et al (2011) Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Plant J 68:273–286PubMedCrossRefGoogle Scholar
  69. Tansengco ML, Hayashi M, Kawaguchi M et al (2003) Crinkle, a novel symbiotic mutant that affects the infection thread growth and alters the root hair, trichome, and seed development in Lotus japonicus. Plant Physiol 131:1054–1063PubMedCrossRefPubMedCentralGoogle Scholar
  70. Tirichine L, Imaizumi-Anraku H, Yoshida S et al (2006a) Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441:1153–1156PubMedCrossRefGoogle Scholar
  71. Tirichine L, James EK, Sandal N et al (2006b) Spontaneous root-nodule formation in the model legume Lotus japonicus: a novel class of mutants nodulates in the absence of rhizobia. Mol Plant Microbe Interact 19:373–382PubMedCrossRefGoogle Scholar
  72. Tirichine L, Sandal N, Madsen LH (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107PubMedCrossRefGoogle Scholar
  73. Tominaga A, Nagata M, Futsuki K et al (2009) Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation1 of Lotus japonicus. Plant Physiol 151:1965–1976PubMedCrossRefPubMedCentralGoogle Scholar
  74. Vriet C, Welham T, Brachmann A et al (2010) A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism. Plant Physiol 154:643–655PubMedCrossRefPubMedCentralGoogle Scholar
  75. Wang Z, Chen J, Weng L et al (2013) Multiple components are integrated to determine leaf complexity in Lotus japonicus. J Integr Plant Biol 55:419–433Google Scholar
  76. Yan J, Cai X, Luo J et al (2010) The REDUCED LEAFLET genes encode key components of the trans-acting small interfering RNA pathway and regulate compound leaf and flower development in Lotus japonicus. Plant Physiol 152:797–807PubMedCrossRefPubMedCentralGoogle Scholar
  77. Yano K, Tansengco ML, Hio T et al (2006) New nodulation mutants responsible for infection thread development in Lotus japonicus. Mol Plant Microbe Interact 19:801–810PubMedCrossRefGoogle Scholar
  78. Yano K, Yoshida S, Muller J et al (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci USA 105:20540–20545PubMedCrossRefPubMedCentralGoogle Scholar
  79. Yano K, Shibata S, Chen WL et al (2009) CERBERUS, a novel U-box protein containing WD-40 repeats, is required for formation of the infection thread and nodule development in the legume–Rhizobium symbiosis. Plant J 60:168–180PubMedCrossRefGoogle Scholar
  80. Yokota K, Fukai E, Madsen LH et al (2009) Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti. Plant Cell 21:267–284PubMedCrossRefPubMedCentralGoogle Scholar
  81. Yoshida C, Funayama-Noguchi S, Kawaguchi M (2010) Plenty, a novel hypernodulation mutant in Lotus japonicus. Plant Cell Physiol 51:1425–1435PubMedCrossRefGoogle Scholar
  82. Zhang SL, Sandal N, Polowick PL (2003) Proliferating Floral Organs (Pfo), a Lotus japonicus gene required for specifying floral meristem determinacy and organ identity, encodes an F-box protein. Plant J 33:607–619PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Division of Symbiotic SystemsNational Institute for Basic BiologyOkazakiJapan
  2. 2.Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark

Personalised recommendations