Advertisement

TaDA: A Logic for Time and Data Abstraction

  • Pedro da Rocha Pinto
  • Thomas Dinsdale-Young
  • Philippa Gardner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8586)

Abstract

To avoid data races, concurrent operations should either be at distinct times or on distinct data. Atomicity is the abstraction that an operation takes effect at a single, discrete instant in time, with linearisability being a well-known correctness condition which asserts that concurrent operations appear to behave atomically. Disjointness is the abstraction that operations act on distinct data resource, with concurrent separation logics enabling reasoning about threads that appear to operate independently on disjoint resources.

We present TaDA, a program logic that combines the benefits of abstract atomicity and abstract disjointness. Our key contribution is the introduction of atomic triples, which offer an expressive approach to specifying program modules. By building up examples, we show that TaDA supports elegant modular reasoning in a way that was not previously possible.

Keywords

Abstract State Data Abstraction Label Transition System Shared Region Proof Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent Library Correctness on the TSO Memory Model. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol. 7211, pp. 87–107. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views: compositional reasoning for concurrent programs. In: POPL, pp. 287–300 (2013)Google Scholar
  3. 3.
    Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Concurrent abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 504–528. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Dodds, M., Feng, X., Parkinson, M., Vafeiadis, V.: Deny-Guarantee Reasoning. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 363–377. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Doherty, S., Detlefs, D.L., Groves, L., Flood, C.H., Luchangco, V., Martin, P.A., Moir, M., Shavit, N., Steele, J. G.L.: DCAS is Not a Silver Bullet for Nonblocking Algorithm Design. In: SPAA, pp. 216–224 (2004)Google Scholar
  6. 6.
    Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control effects on local relational reasoning. In: ICFP, pp. 143–156 (2010)Google Scholar
  7. 7.
    Filipović, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for Concurrent Objects. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 252–266. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Gotsman, A., Yang, H.: Linearizability with ownership transfer. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 256–271. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)CrossRefGoogle Scholar
  10. 10.
    Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification. In: POPL, pp. 271–282 (2011)Google Scholar
  11. 11.
    Ley-Wild, R., Nanevski, A.: Subjective auxiliary state for coarse-grained concurrency. In: POPL, pp. 561–574 (2013)Google Scholar
  12. 12.
    O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci. 375(1-3), 271–307 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL, pp. 247–258 (2005)Google Scholar
  14. 14.
    da Rocha Pinto, P., Dinsdale-Young, T., Dodds, M., Gardner, P., Wheelhouse, M.: A simple abstraction for complex concurrent indexes. In: OOPSLA, pp. 845–864 (2011)Google Scholar
  15. 15.
    da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: A Logic for Time and Data Abstraction. Tech. rep., Imperial College London (2014)Google Scholar
  16. 16.
    Svendsen, K., Birkedal, L.: Impredicative Concurrent Abstract Predicates. In: Shao, Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Svendsen, K., Birkedal, L., Parkinson, M.: Modular reasoning about separation of concurrent data structures. In: Felleisen, M., Gardner, P. (eds.) Programming Languages and Systems. LNCS, vol. 7792, pp. 169–188. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and hoare-style reasoning in a logic for higher-order concurrency. In: ICFP, pp. 377–390 (2013)Google Scholar
  19. 19.
    Turon, A.J., Thamsborg, J., Ahmed, A., Birkedal, L., Dreyer, D.: Logical relations for fine-grained concurrency. In: POPL, pp. 343–356 (2013)Google Scholar
  20. 20.
    Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, University of Cambridge, Computer Laboratory (2008)Google Scholar
  21. 21.
    Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving Correctness of Highly-concurrent Linearisable Objects. In: PPoPP, pp. 129–136 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pedro da Rocha Pinto
    • 1
  • Thomas Dinsdale-Young
    • 2
  • Philippa Gardner
    • 1
  1. 1.Imperial College LondonUK
  2. 2.Aarhus UniversityDenmark

Personalised recommendations