Solving Parametric Polynomial Systems by RealComprehensiveTriangularize

  • Changbo Chen
  • Marc Moreno Maza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8592)

Abstract

In the authors’ previous work, the concept of comprehensive triangular decomposition of parametric semi-algebraic systems (RCTD for short) was introduced. For a given parametric semi-algebraic system, say S, an RCTD partitions the parametric space into disjoint semi-algebraic sets, above each of which the real solutions of S are described by a finite family of triangular systems. Such a decomposition permits to easily count the number of distinct real solutions depending on different parameter values as well as to conveniently describe the real solutions as continuous functions of the parameters. In this paper, we present the implementation of RCTD in the RegularChains library, namely the RealComprehensiveTriangularize command. The use of RCTD is illustrated by the stability analysis of several biological systems.

Keywords

Parametric polynomial system real comprehensive triangular decomposition RegularChains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in real algebraic geometry. Algorithms and Computations in Mathematics, vol. 10. Springer (2006)Google Scholar
  2. 2.
    Caviness, B., Johnson, J. (eds.): Quantifier Elimination and Cylindical Algebraic Decomposition. Texts and Mongraphs in Symbolic Computation. Springer (1998)Google Scholar
  3. 3.
    Chen, C.: Solving Polynomial Systems via Triangular Decomposition. PhD thesis, University of Western Ontario (2011)Google Scholar
  4. 4.
    Chen, C., Davenport, J.H., May, J., Maza, M.M., Xia, B., Xiao, R.: Triangular decomposition of semi-algebraic systems. J. Symb. Comp. 49, 3–26 (2013)CrossRefMATHGoogle Scholar
  5. 5.
    Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Pan, W.: Comprehensive triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Chen, C., Maza, M.M.: Semi-algebraic description of the equilibria of dynamical systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 101–125. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Cinquin, O., Demongeot, J.: Positive and negative feedback: striking a balance between necessary antagonists (2002)Google Scholar
  9. 9.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 515–532. Springer, Heidelberg (1975)Google Scholar
  10. 10.
    Kalkbrener, M.: Three contributions to elimination theory. PhD thesis, Johannes Kepler University, Linz (1991)Google Scholar
  11. 11.
    Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Comput. 42(6), 636–667 (2007)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Niu, W., Wang, D.M.: Algebraic approaches to stability analysis of biological systems. Mathematics in Computer Science 1, 507–539 (2008)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Tyson, J., Novak, B.: Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and irreversible transitions. Journal of Theoretical Biology 210(2), 249–263 (2001)CrossRefGoogle Scholar
  14. 14.
    Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comp. 14, 1–29 (1992)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Yang, L., Hou, X.R., Xia, B.: A complete algorithm for automated discovering of a class of inequality-type theorems. Science in China, Series F 44(6), 33–49 (2001)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Yang, L., Zhang, J.: Searching dependency between algebraic equations: an algorithm applied to automated reasoning. Technical Report IC/89/263, International Atomic Energy Agency, Miramare, Trieste, Italy (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Changbo Chen
    • 1
  • Marc Moreno Maza
    • 2
  1. 1.Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChina
  2. 2.ORCCAUniversity of Western OntarioCanada

Personalised recommendations