Generic and Parallel Groebner Bases in JAS

(Extended Abstract)
  • Heinz Kredel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8592)

Abstract

We present generic, type safe Groebner bases software. The implemented algorithms distinguish Groebner base computation in polynomials rings over fields, rings with pseudo division, parameter rings, regular rings, Euclidean rings, non-commutative fields in commuting, solvable and free-non-commuting main variables. The interface, class organization is described in the object-oriented programming environment of the Java Algebra System (JAS). Different critical pair selection strategies and reduction algorithms can be provided by dependency injection. Different implementations can be selected for the mentioned coefficient rings through factory classes and methods. Groebner bases algorithms can be composed according to application needs and/or hardware availability. For example, versions for shared memory sequential or parallel computation, term order optimization or fraction free coefficient ring computation can be composed. For distributed memory compute clusters there are OpenMPI and MPJ implementations of Buchberger’s algorithm with optimized distributed storage of reduction polynomials.

Keywords

generic multivariate polynomials generic Groebner bases algorithm composition parallel computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Böge, W., Gebauer, R., Kredel, H.: Some examples for solving systems of algebraic equations by calculating Gröbner bases. J. Symb. Comp. 2/1(1), 83–98 (1986)CrossRefGoogle Scholar
  2. 2.
    Buchberger, B.: Gröbner bases: An algorithmic method in polynomial ideal theory. In: Bose, N. (ed.) Recent Trends in Multidimensional Systems Theory, Reidel, pp. 184–232 (1985)Google Scholar
  3. 3.
    Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symbolic Computation 16(4), 329–344 (1994)CrossRefGoogle Scholar
  4. 4.
    Gebauer, R., Möller, H.M.: On an installation of Buchberger’s algorithm. J. Symb. Comput. 6(2/3), 275–286 (1988)CrossRefMATHGoogle Scholar
  5. 5.
    Kredel, H.: On a Java Computer Algebra System, its performance and applications. Science of Computer Programming 70(2-3), 185–207 (2008)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Kredel, H.: Unique factorization domains in the java computer algebra system. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS, vol. 6301, pp. 86–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Kredel, H.: Distributed Gröbner bases computation with MPJ. In: IEEE AINA Workshops, Barcelona, Spain, pp. 1429–1435 (2013)Google Scholar
  8. 8.
    Kredel, H.: The Java algebra system (JAS). Technical report (2000), http://krum.rz.uni-mannheim.de/jas/
  9. 9.
    Taboada, G.L., Ramos, S., Expósito, R.R., Touriño, J., Doallo, R.: FastMPJ a high performance Java message passing library. Technical report (2011), http://fastmpj.com/

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Heinz Kredel
    • 1
  1. 1.University of MannheimGermany

Personalised recommendations