PHAT – Persistent Homology Algorithms Toolbox

  • Ulrich Bauer
  • Michael Kerber
  • Jan Reininghaus
  • Hubert Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8592)


PHAT is a C++ library for the computation of persistent homology by matrix reduction. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. This makes PHAT a versatile platform for experimenting with algorithmic ideas and comparing them to state of the art implementations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, U., Kerber, M., Reininghaus, J.: Clear and compress: Computing persistent homology in chunks. In: Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization, pp. 103–117. Springer (2014)Google Scholar
  2. 2.
    Chen, C., Kerber, M.: Persistent homology computation with a twist. In: 27th European Workshop on Computational Geometry (EuroCG), pp. 197–200 (2011)Google Scholar
  3. 3.
    de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co)homology. Inverse Problems 27(12), 124003+ (2011)Google Scholar
  4. 4.
    Edelsbrunner, H., Harer, J.: Persistent homology — a survey. In: Surveys on Discrete and Computational Geometry: Twenty Years Later, Contemporary Mathematics, pp. 257–282 (2008)Google Scholar
  5. 5.
    Edelsbrunner, H., Harer, J.: Computational Topology. An Introduction. American Mathematical Society (2010)Google Scholar
  6. 6.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete & Computational Geometry 28(4), 511–533 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Forman, R.: Morse theory for cell complexes. Advances in Mathematics 134(1), 90–145 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Efficient computation of 3D Morse –Smale complexes and persistent homology using discrete Morse theory. The Visual Computer 28(10), 959–969 (2012)CrossRefGoogle Scholar
  9. 9.
    Kasten, J., Reininghaus, J., Reich, W., Scheuermann, G.: Toward the extraction of saddle periodic orbits. In: Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization, pp. 55–69. Springer (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ulrich Bauer
    • 1
  • Michael Kerber
    • 2
  • Jan Reininghaus
    • 1
  • Hubert Wagner
    • 3
  1. 1.IST AustriaKlosterneuburgAustria
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany
  3. 3.Jagiellonian UniversityPoland

Personalised recommendations