The Basic Polynomial Algebra Subprograms

  • Changbo Chen
  • Svyatoslav Covanov
  • Farnam Mansouri
  • Marc Moreno Maza
  • Ning Xie
  • Yuzhen Xie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8592)


The Basic Polynomial Algebra Subprograms (BPAS) provides arithmetic operations (multiplication, division, root isolation, etc.) for univariate and multivariate polynomials over prime fields or with integer coefficients. The code is mainly written in CilkPlus [10] targeting multicore processors. The current distribution focuses on dense polynomials and the sparse case is work in progress. A strong emphasis is put on adaptive algorithms as the library aims at supporting a wide variety of situations in terms of problem sizes and available computing resources. One of the purposes of the BPAS project is to take advantage of hardware accelerators in the development of polynomial systems solvers. The BPAS library is publicly available in source at .


Polynomial arithmetic parallel processing multi-core processors Fast Fourier Transforms (FFTs) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Chen, C., Mansouri, F., Moreno Maza, M., Xie, N., Xie, Y.: Parallel Multiplication of Dense Polynomials with Integer Coefficient. Technical report, The University of Western Ontario (2013)Google Scholar
  3. 3.
    Chen, C., Moreno Maza, M., Xie, Y.: Cache complexity and multicore implementation for univariate real root isolation. J. of Physics: Conf. Series 341 (2011)Google Scholar
  4. 4.
    Frigo, M., Johnson, S.G.: The design and implementation of FFTW3  93(2), 216–231 (2005)Google Scholar
  5. 5.
    Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms. ACM Transactions on Algorithms 8(1), 4 (2012)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Gastineau, M., Laskar, J.: Highly scalable multiplication for distributed sparse multivariate polynomials on many-core systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 100–115. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    von zur Gathen, J., Gerhard, J.: Fast algorithms for taylor shifts and certain difference equations. In: ISSAC, pp. 40–47 (1997)Google Scholar
  8. 8.
    Hart, W., Johansson, F., Pancratz, S.: FLINT: Fast Library for Number Theory. V. 2.4.3,
  9. 9.
    Jenks, R.D., Sutor, R.S.: AXIOM, The Scientific Computation System. Springer (1992)Google Scholar
  10. 10.
    Leiserson, C.E.: The Cilk++ concurrency platform. The Journal of Supercomputing 51(3), 244–257 (2010)CrossRefGoogle Scholar
  11. 11.
    Li, X., Moreno Maza, M., Rasheed, R., Schost, É.: The modpn library: Bringing fast polynomial arithmetic into maple. J. Symb. Comput. 46(7), 841–858 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Mansouri, F.: On the parallelization of integer polynomial multiplication. Master’s thesis, The University of Western Ontario, London, ON, Canada (2014),
  13. 13.
    Monagan, M.B., Pearce, R.: Parallel sparse polynomial multiplication using heaps. In: ISSAC, pp. 263–270. ACM (2009)Google Scholar
  14. 14.
    Moreno Maza, M., Xie, Y.: FFT-based dense polynomial arithmetic on multi-cores. In: Mewhort, D.J.K., Cann, N.M., Slater, G.W., Naughton, T.J. (eds.) HPCS 2009. LNCS, vol. 5976, pp. 378–399. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Moreno Maza, M., Xie, Y.: Balanced dense polynomial multiplication on multi-cores. Int. J. Found. Comput. Sci. 22(5), 1035–1055 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Schönhage, A., Strassen, V.: Schnelle multiplikation großer zahlen. Computing 7(3-4), 281–292 (1971)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Changbo Chen
    • 1
  • Svyatoslav Covanov
    • 2
  • Farnam Mansouri
    • 2
  • Marc Moreno Maza
    • 2
  • Ning Xie
    • 2
  • Yuzhen Xie
    • 2
  1. 1.Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChina
  2. 2.University of Western OntarioCanada

Personalised recommendations