A Visual-Haptic Multiplexing Scheme for Teleoperation Over Constant-Bitrate Communication Links

  • Burak Cizmeci
  • Rahul Chaudhari
  • Xiao Xu
  • Nicolas Alt
  • Eckehard Steinbach
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8619)

Abstract

We propose a novel multiplexing scheme for teleoperation over constant bitrate (CBR) communication links. The proposed approach uniformly divides the channel into 1 ms resource buckets and controls the size of the transmitted video packets as a function of the irregular haptic transmission events generated by a perceptual haptic data reduction approach. The performance of the proposed multiplexing scheme is measured objectively in terms of delay-jitter and packet rates. The results show that acceptable multiplexing delays on both the visual and haptic streams are achieved. Our evaluation shows that the proposed approach can provide a guaranteed constant delay for the time-critical force signal, while introducing acceptable video delay.

Keywords

Teleoperation Haptic communication Multi-modal multiplexing Human-robot interactions over network 

Notes

Acknowledgment

The first author gratefully acknowledges the support of the TUM Graduate School’s Faculty Graduate Center (Electrical Engineering and Information Technology) at the TU München.

References

  1. 1.
    Steinbach, E., Hirche, S., Kammerl, J., Vittorias, I., Chaudhari, R.: Haptic data compression and communication for telepresence and teleaction. IEEE Signal Process. Mag. 28(1), 87–96 (2011)CrossRefGoogle Scholar
  2. 2.
    Ryu, J.-H., Artigas, J., Preusche, C.: A passive bilateral control scheme for a teleoperator with time-varying communication delay. Mechatronics 20(7), 812–823 (2010)CrossRefGoogle Scholar
  3. 3.
    Paredes Farrera, M., Fleury, M., Ghanbari, M.: Accurate packet-by-packet measurement and analysis of video streams across an internet tight link. Signal Process. Image Commun. 22, 69–85 (2007). (Elsevier Science Inc.)CrossRefGoogle Scholar
  4. 4.
    Cha, J., Seo, Y., Kim, Y., Ryu, J.: An authoring/editing framework for haptic broadcasting: passive haptic interactions using mpeg-4 bifs. In: Proceedings of the 2nd Joint EuroHaptics Conference and Symposium, pp. 274–279 (2007)Google Scholar
  5. 5.
    Eid, M.A., Cha, J., El-Saddik, A.: Admux: an adaptive multiplexer for haptic-audio-visual data communication. IEEE Trans. Instrum. Measur. 60(1), 21–31 (2011)CrossRefGoogle Scholar
  6. 6.
    Hinterseer, P., Hirche, S., Chaudhuri, S., Steinbach, E., Buss, M.: Perception-based data reduction and transmission of haptic data in telepresence and teleaction systems. IEEE Trans. Signal Proc. 56, 588–597 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Apposite-Technologies, Netropy n60 network emulation hardware. http://www.apposite-tech.com/products/netropy-N60.html
  8. 8.
    NVIDIA-CUDA-DEVELOPER-ZONE, Nvidia cuda video encode/decode c api (2010). http://developer.nvidia.com/cuda-cc-sdk-code-samples
  9. 9.
    Szigeti, T., Hattingh, C.: End-to-End QoS Network Design: Quality of Service in LANs, WANs, and VPNs (Networking Technology). Cisco Press (2004)Google Scholar
  10. 10.
    Brandi, F., Kammerl, J., Steinbach, E.: Error-resilient perceptual coding for networked haptic interaction. In: Proceedings of ACM Multimedia (Full Paper), (Firenze, Italy), October 2010Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Burak Cizmeci
    • 1
  • Rahul Chaudhari
    • 1
  • Xiao Xu
    • 1
  • Nicolas Alt
    • 1
  • Eckehard Steinbach
    • 1
  1. 1.Institute for Media TechnologyTechnische Universität MünchenMunichGermany

Personalised recommendations