Data-Driven Texture Rendering with Electrostatic Attraction

  • Gholamreza Ilkhani
  • Mohammad Aziziaghdam
  • Evren Samur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8618)


In this paper, we present a data-driven haptic rendering method applied to a tactile display based on electrostatic attraction force. For realistic virtual textures, surface data from three materials is collected using an accelerometer and then replayed on the electrostatically-actuated tactile display. The proposed data-driven texture rendering method was compared with the standard square wave excitation through a psychophysical experiment. Subjects rated similarities between real samples and virtual textures rendered by both methods. Results show that the virtual textures generated with the data-driven method had significantly higher percentage of similarity with the real textures in comparison to the square wave signal. In addition, the proposed method resulted in higher number of correct matches between virtual models and real materials.


Data-driven haptics Electrostatic attraction Electrovibration Texture rendering 



This work was in part supported by the Scientific and Technological Research Council of Turkey (TUBITAK, # 113E601) and Bogazici University Research Fund (# 7203).


  1. 1.
    Meyer, D.J., Peshkin, M.A., Colgate, J.E.: Fingertip friction modulation due to electrostatic attraction. In: 2013 World Haptics Conference (WHC), pp. 43–48 (2013)Google Scholar
  2. 2.
    Nara, T., Takasaki, M., Maeda, T., Higuchi, T., Ando, S., Tachi, S.: Surface acoustic wave tactile display. IEEE Comput. Graph. Appl. 21(6), 56–63 (2001)CrossRefGoogle Scholar
  3. 3.
    Winfield, L., Glassmire,J., Colgate, J.E., Peshkin, M.: T-PaD: tactile pattern display through variable friction reduction. In: Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07), pp. 421–426 (2007)Google Scholar
  4. 4.
    Biet, M., Giraud, F., Lemaire-Semail, B.: Implementation of tactile feedback by modifying the perceived friction. Eur. Phys. J. Appl. Phys. 43(01), 123–135 (2008)CrossRefGoogle Scholar
  5. 5.
    Strong, R., Troxel, D.: An electrotactile display. IEEE Trans. Man Mach. Syst. 11(1), 72–79 (1970)CrossRefGoogle Scholar
  6. 6.
    Bau, O., Poupyrev, I., Israr, A., Harrison, C.: TeslaTouch: electrovibration for touch surfaces. In: Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology -UIST’10, pp. 283–292 (2010)Google Scholar
  7. 7.
    Linjama, J., Makinen, V.: E-Sense screen: novel haptic display with capacitive electrosensory interface. In: HAID 2009, 4th Workshop for Haptic and Audio Interaction Design (2009)Google Scholar
  8. 8.
    Radivojevic, Z., Beecher, P., Bower, C., Haque, S., Andrew, P., Hasan, T., Bonaccorso, F., Ferrari, A.C., Henson, B.: Electrotactile touch surface by using transparent graphene. In: Proceedings of 2012 Virtual Reality International Conference - VRIC ’12, p. 1 (2012)Google Scholar
  9. 9.
    Wijekoon, D., Cecchinato, M.E., Hoggan, E., Linjama, J.: Electrostatic modulated friction as tactile feedback: intensity perception. In: Haptics: Perception, Devices, Mobility, and Communication, pp. 613–624 (2012)Google Scholar
  10. 10.
    Kim, S.-C., Israr, A., Poupyrev, I.: Tactile rendering of 3D features on touch surfaces. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology - UIST ’13, pp. 531–538 (2013)Google Scholar
  11. 11.
    Meyer, D., Wiertlewski, M., Peshkin, M., Colgate, E.: Dynamics of ultrasonic and electrostatic friction modulation for rendering texture on haptic surfaces. In: Proceedings of IEEE Haptics Symposium (2014)Google Scholar
  12. 12.
    Höver, R., Di Luca, M., Harders, M.: User-based evaluation of data-driven haptic rendering. ACM Trans. Appl. Percept. 8(1), 1–23 (2010)CrossRefGoogle Scholar
  13. 13.
    Romano, J.M., Kuchenbecker, K.J.: Creating realistic virtual textures from contact acceleration data. IEEE Trans. Haptics 5(2), 109–119 (2012)CrossRefGoogle Scholar
  14. 14.
    Hover, R., Harders, M., Szekely, G.: Data-driven haptic rendering of visco-elastic effects. In: 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2008)Google Scholar
  15. 15.
    Wiertlewski, M., Lozada, J., Hayward, V.: The spatial spectrum of tangential skin displacement can encode tactual texture. IEEE Trans. Robot. 27(3), 461–472 (2011)CrossRefGoogle Scholar
  16. 16.
    Horenstein, M., Bifano, T., Pappas, S.: Real time optical correction using electrostatically actuated MEMS devices. J. Electrostat. 46, 91–101 (1999)CrossRefGoogle Scholar
  17. 17.
    Cornsweet, T.N.: The Staircase-method in psychophysics. Am. J. Psychol. 75(3), 485–491 (1962)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gholamreza Ilkhani
    • 1
  • Mohammad Aziziaghdam
    • 1
  • Evren Samur
    • 1
  1. 1.Department of Mechanical EngineeringBogazici UniversityIstanbulTurkey

Personalised recommendations