Logics with Copy and Remove

  • Carlos Areces
  • Hans van Ditmarsch
  • Raul Fervari
  • François Schwarzentruber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8652)


We propose a logic with the dynamic modal operators copy and remove. The copy operator replicates a given model, and the remove operator removes paths in a given model. We show that the product update by an action model (with Boolean pre-conditions) in dynamic epistemic logic decomposes in copy and remove operations. We also show that copy and remove operators (of path of length 1) can be expressed by action models. We investigate the complexity of the satisfiability problem of syntactic fragments of the logic with copy and remove operations.


modal logic dynamic epistemic logic complexity expressivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Areces, C., Fervari, R., Hoffmann, G.: Moving arrows and four model checking results. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 142–153. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Areces, C., Fervari, R., Hoffmann, G.: Swap logic. Logic Journal of the IGPL 22(2), 309–332 (2014)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Aucher, G., Schwarzentruber, F.: On the complexity of dynamic epistemic logic. In: Proceedings of TARK 2013, Chennai, India (January 2013)Google Scholar
  4. 4.
    Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common knowledge and private suspicions. In: Gilboa, I. (ed.) TARK 1998, Evanstin, IL, USA, pp. 43–56. Morgan Kaufmann (July 1998)Google Scholar
  5. 5.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Fervari, R.: Relation-Changing Modal Logics. PhD thesis, Facultad de Matemática Astronomía y Física, Universidad Nacional de Córdoba, Córdoba, Argentina (March 2014)Google Scholar
  7. 7.
    Goré, R.: Tableau methods for modal and temporal logics. In: Handbook of Tableau Methods, pp. 297–396 (1999)Google Scholar
  8. 8.
    Kooi, B., Renne, B.: Arrow update logic. Review of Symbolic Logic 4(4), 536–559 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Kooi, B., Renne, B.: Generalized arrow update logic. In: Apt, K. (ed.) TARK, pp. 205–211. ACM (2011)Google Scholar
  10. 10.
    van Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–276. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    van Ditmarsch, H., French, T.: Simulation and information: Quantifying over epistemic events. In: Meyer, J.-J.C., Broersen, J. (eds.) KRAMAS 2008. LNCS, vol. 5605, pp. 51–65. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    van Ditmarsch, H., Herzig, A., De Lima, T.: Public announcements, public assignments and the complexity of their logic. Journal of Applied Non-Classical Logics 22(3), 249–273 (2012)CrossRefMathSciNetGoogle Scholar
  13. 13.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Kluwer (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Carlos Areces
    • 1
  • Hans van Ditmarsch
    • 2
  • Raul Fervari
    • 1
  • François Schwarzentruber
    • 3
  1. 1.FaMAFUniversidad Nacional de Córdoba & CONICETArgentina
  2. 2.LORIACNRS - Université de Lorraine, France & IMScChennaiIndia
  3. 3.ENS RennesFrance

Personalised recommendations