Advertisement

Neuro-Biomechanics of Human Movement

  • Tijana Ivancevic
  • Helen Greenberg
  • Ronald Greenberg
Chapter
Part of the Cognitive Systems Monographs book series (COSMOS, volume 24)

Abstract

Neuro-Biomechanics of Human Movement, introduces the scientific theoretical background for this book (see Fig. 2.1), which is later applied to modern technological advances (presented in the next chapter). This background theory ranges from the neurophysiological to thermodynamical bases of human movement, across anatomical, physiological, mechanical and computational aspects. It was the intention of the authors to develop this book as far as possible without any mathematical equations (with a little exception related to the father of biomechanics, Sir A.V. Hill), so there are no equations prior to the section on Computational Biomechanics.

Keywords

Joint Angle Human Movement Fourier Spectrum Semicircular Canal Muscular Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [Bor681]
    Borelli, G.A.: De Motu Animalium (I and II), Ex Typographia Angeli Bernabo, Rome (1680/1681)Google Scholar
  2. [Maq89a]
    Maquet, P.: Borelli: De Motu Animalium. A first treatise on biomechanics (in French). Acta Orthop. Belg. 55(4), 541–546 (1989)Google Scholar
  3. [Maq89b]
    GA, Borelli: On the Movement of Animals. Springer, New York (1989)Google Scholar
  4. [HL23]
    Hill, A.V., Lupton, H.: Muscular exercise, lactic acid, and the supply and utilization of oxygen. Quart. J. Med. 16, 135 (1923)CrossRefGoogle Scholar
  5. [HLL24a]
    Hill, A.V., Long, C.N.H., Lupton, H.: Muscular exercise, lactic acid and the supply and utilization of oxygen, Parts I–III. Proc. Roy. Soc. B 96, 438 (1924)CrossRefGoogle Scholar
  6. [HLL24b]
    Hill, A.V., Long, C.N.H., Lupton, H.: Muscular exercise, lactic acid and the supply and utilization of oxygen, Parts IV–VI. Proc. Roy. Soc. B 97, 84 (1924)CrossRefGoogle Scholar
  7. [HLL24c]
    Hill, A.V., Long, C.N.H., Lupton, H.: Muscular exercise, lactic acid and the supply and utilization of oxygen, Parts VII–IX. Proc. Roy. Soc. B 97, 155 (1924)CrossRefGoogle Scholar
  8. [Hil26a]
    Hill, A.V.: The scientific study of athletics. Sci. Am. 134(4), 224–225 (1926)CrossRefGoogle Scholar
  9. [Hil26b]
    Hill, A.V.: Muscular Activity. University of Pennsylvania Press, Philadelphia (1926)Google Scholar
  10. [Hil26c]
    Hill, A.V.: Muscular Activity: Herter Lectures—Sixteenth Course. Williams & Wilkins Company, Baltimore (1926)Google Scholar
  11. [Hil27a]
    Hill, A.V.: Muscular Movement in Man: The Factors Governing Speed and Recovery from Fatigue. McGraw-Hill, New York (1927)Google Scholar
  12. [Hil27b]
    Hill, A.V.: Living Machinery. Harcourt Brace and Company, New York (1927)Google Scholar
  13. [Bas02]
    Bassett, D.R.: Scientific contributions of A. V. Hill: exercise physiology pioneer. J. Appl. Physiol. 93, 1567–1582 (2002)Google Scholar
  14. [Hil38]
    Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. B 76, 136–195 (1938)CrossRefGoogle Scholar
  15. [Hil40]
    Hill, A.V.: The dynamic constants of human muscle. Proc. Roy. Soc. B 128, 263–274 (1940)CrossRefGoogle Scholar
  16. [Hil50]
    Hill, A.V.: The series elastic component of muscles. Proc. Roy. Soc. B 137, 273–280 (1950)CrossRefGoogle Scholar
  17. [Hil70]
    Hill, A.V.: First and Last Experiments in Muscle Mechanics. Cambridge University Press, London (1970)Google Scholar
  18. [SR06]
    Scovil, C.Y., Ronsky, J.L.: Sensitivity of a Hill-based muscle model to perturbations in model parameters. J. Biomech. 39, 20552063 (2006)Google Scholar
  19. [Ano75]
    Anohin, P.K.: Essays on the Physiology of Functional Systems (in Russian). Medicine, Moscow (1975)Google Scholar
  20. [Ano78]
    Anohin, P.K.: Philosophical Aspects of the Theory of Functional Systems (in Russian). Science, Moscow (1978)Google Scholar
  21. [Ano80]
    Anohin, P.K.: Key Questions of the Theory of Functional Systems (in Russian). Science, Moscow (1980)Google Scholar
  22. [Ano98]
    Anohin, P.K.: Cybernetics of Functional Systems (in Russian). Medicine, Moscow (1998)Google Scholar
  23. [Sud96]
    Sudakov, K.V.: Theory of Functional Systems (in Russian). Medicine, Moscow (1996)Google Scholar
  24. [DK05]
    Danilova, N.N., Krylov, A.L.: Physiology of Higher Nervous Activity (in Russian). MGU Textbooks, Phoenix (2005)Google Scholar
  25. [IIJ12]
    Ivancevic, T., Ivancevic, V., Jovanovic, B.: Geometric Methods in Modern Biomechanics. Nova Science Publishers, New York (2012)Google Scholar
  26. [II08b]
    Ivancevic, V., Ivancevic, T.: Human versus humanoid biodynamics. J. Humanoid Robotics 5(4), 699–713 (2008)CrossRefMathSciNetGoogle Scholar
  27. [Ber67]
    Bernstein, N.A.: The Co-ordination and Regulation of Movements. Pergamon Press, Oxford (1967)Google Scholar
  28. [Chu98]
    Chu, D.: Jumping into Plyometrics, 2nd edn. Human Kinetics, Champaign (1998)Google Scholar
  29. [SHR04]
    Sherrington, C.S.: The Integrative Action of the Nervous System. Yale University Press, New Haven (1906)Google Scholar
  30. [Hou67]
    Houk, J.C.: Feedback control of skeletal muscles. Brain Res. 5, 433–451 (1967)CrossRefGoogle Scholar
  31. [Hou79]
    Houk, J.C.: Regulation of stiffness by skeletomotor reflexes. Ann. Rev. Physiol. 41, 99–114 (1979)CrossRefGoogle Scholar
  32. [Gra18]
    Gray, H.: Anatomy of the Human Body (20th U.S. ed.). Online internet version (2014). http://www.bartleby.com/107/
  33. [HH52]
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)Google Scholar
  34. [Hod64]
    Hodgkin, A.L.: The Conduction of the Nervous Impulse. Liverpool University Press, Liverpool (1964)Google Scholar
  35. [Nob62]
    Noble, D.: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J. Physiol. 160, 317–352 (1962)Google Scholar
  36. [Hux57]
    Huxley, A.F.: Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957)Google Scholar
  37. [HS71]
    Huxley, A.F., Simmons, R.M.: Mechanical properties of the cross-bridges of frog striated muscle. J. Physiol. 218, 59–60 (1971)Google Scholar
  38. [Hux74]
    Huxley, A.F.: Muscular contraction. J. Physiol. 243, 143 (1974)Google Scholar
  39. [Hat77a]
    Hatze, H.: A complete set of control equations for the human musculo-skeletal system. J. Biomech. 10, 799–805 (1977)CrossRefGoogle Scholar
  40. [Hat77b]
    Hatze, H.: A myocybernetic control model of skeletal muscle. Biol. Cybern. 25, 103–119 (1977)zbMATHGoogle Scholar
  41. [Hat81a]
    Hatze, H.: Ageneral myocybernetic control model of skeletal muscle. Biol. Cybern. 39, 165–170 (1981)Google Scholar
  42. [Hat81b]
    Hatze, H.: A comprehensive model for human motion simulation and its application to the take-off phase of the long jump. J. Biomech. 14, 135–142 (1981)CrossRefGoogle Scholar
  43. [Hat85]
    Hatze, H.: Dynamics of the musculoskeletal system. J. Biomech. 18, 515–527 (1985)CrossRefGoogle Scholar
  44. [Dav73]
    Davydov, A.S.: The theory of contraction of proteins under their excitation. J. Theory Biol. 38(3), 559–569 (1973)CrossRefGoogle Scholar
  45. [Dav74]
    Davydov, A.S.: Quantum theory of muscular contraction. Biophysics 19, 684–691 (1974)Google Scholar
  46. [Dav77]
    Davydov, A.S.: Solitons and energy transfer along protein molecules. J. Theory Biol. 66(2), 379–387 (1977)CrossRefGoogle Scholar
  47. [II06a]
    Ivancevic, V., Ivancevic, T.: Human-Like Biomechanics. Springer, Heidelberg (2006)Google Scholar
  48. [II06b]
    Ivancevic, V., Ivancevic, T.: Natural Biodynamics. World Scientific, Singapore (2006)Google Scholar
  49. [II06c]
    Ivancevic, V., Ivancevic, T.: Geometrical Dynamics of Complex Systems. Springer, Dordrecht (2006)Google Scholar
  50. [II07]
    Ivancevic, V., Ivancevic, T.: Applied Differential Geometry: A Modern Introduction. World Scientific, Singapore (2007)CrossRefGoogle Scholar
  51. [II08a]
    Ivancevic, V., Ivancevic, T.: Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals. Springer, Berlin (2008)Google Scholar
  52. [Iva09a]
    Ivancevic, V.: New mechanics of traumatic brain injury. Cogn. Neurodyn. 3, 281–293 (2009)CrossRefGoogle Scholar
  53. [Iva09b]
    Ivancevic, V.: New mechanics of spinal injury. Int. J. Appl Mech. 1(2), 387–401 (2009)CrossRefGoogle Scholar
  54. [Iva09c]
    Ivancevic, V.: New mechanics of generic musculo-skeletal injury. Biophys. Rev. Let. 4(3), 273–287 (2009)CrossRefMathSciNetGoogle Scholar
  55. [Wel67]
    Wells, D.A.: Schaum’s Lagrangian Dynamics. McGraw-Hill, New York (1967)Google Scholar
  56. [Wei13]
    Weisstein, E.W.: Double Pendulum, ScienceWorld. University Science, Sausalito (2005)Google Scholar
  57. [Pan98]
    Panjabi, M.M., et al.: Mechanism of whiplash injury. Clin. Biomech. 13, 239–249 (1998)CrossRefGoogle Scholar
  58. [Win90]
    Winter, D.A.: Biomechanics and Motor Control of Human Movement, 2nd edn. Wiley, Toronto (1990)Google Scholar
  59. [AD10]
    Alqasemi, R., Dubey, R.: A 9-DoF Wheelchair-Mounted Robotic Arm System: Design, Control, Brain-Computer Interfacing, and Testing. A Chapter in Advances in Robot Manipulators (E. Hall ed.). Intech, Vienna (2010)Google Scholar
  60. [Pri67]
    Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes (3rd ed.). Wiley Interscience, New York (1955/1961/1967)Google Scholar
  61. [Pri47]
    Prigogine, I.: French Original: Étude Thermodynamique des Phenomènes Irreversibles. Desoer, Liege (1947)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tijana Ivancevic
    • 1
  • Helen Greenberg
    • 2
  • Ronald Greenberg
    • 2
  1. 1.Tesla Science Evolution InstituteAdelaideAustralia
  2. 2.Diamond International CorporationAdelaideAustralia

Personalised recommendations