International Conference on Theory and Application of Diagrams

Diagrams 2014: Diagrammatic Representation and Inference pp 277-292 | Cite as

A Framework for Heterogeneous Reasoning in Formal and Informal Domains

  • Matej Urbas
  • Mateja Jamnik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8578)


Heterogeneous reasoning refers to theorem proving with mixed diagrammatic and sentential languages and inference steps. We introduce a heterogeneous logic that enables a simple and flexible way to extend logics of existing general-purpose theorem provers with representations from entirely different and possibly not formalised domains. We use our heterogeneous logic in a framework that enables integrating different reasoning tools into new heterogeneous reasoning systems. Our implementation of this framework is MixR – we demonstrate its flexibility and extensibility with a few examples.


interactive heterogeneous diagrammatic theorem proving 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barker-Plummer, D., Etchemendy, J., Liu, A., Murray, M., Swoboda, N.: Openproof - A flexible framework for heterogeneous reasoning. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 347–349. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Böhme, S., Nipkow, T.: Sledgehammer: Judgement day. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 107–121. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Calcagno, C., Gardner, P., Zarfaty, U.: Context logic as modal logic: completeness and parametric inexpressivity. In: POPL, pp. 123–134. ACM (2007)CrossRefGoogle Scholar
  4. 4.
    Farmer, W.M.: Biform Theories in Chiron. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 66–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: How we can do without modal logics. AI 65(1), 29–70 (1994)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Siekmann, J.H., et al.: Proof development with ΩMEGA. In: Voronkov, A. (ed.) CADE-18. LNCS (LNAI), vol. 2392, pp. 144–149. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Jamnik, M., Bundy, A., Green, I.: On Automating Diagrammatic Proofs of Arithmetic Arguments. JOLLI 8(3), 297–321 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kortenkamp, U., Richter-Gebert, J.: Using automatic theorem proving to improve the usability of geometry software. In: Procedings of the Mathematical User-Interfaces Workshop, pp. 1–12 (2004)Google Scholar
  9. 9.
    Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Paulson, L.C.: Isabelle - A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Shin, S.J.: Heterogeneous Reasoning and its Logic. BSL 10(1), 86–106 (2004)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Urbas, M., Jamnik, M.: Diabelli: A heterogeneous proof system. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 559–566. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Urbas, M., Jamnik, M., Stapleton, G., Flower, J.: Speedith: A diagrammatic reasoner for spider diagrams. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS (LNAI), vol. 7352, pp. 163–177. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matej Urbas
    • 1
  • Mateja Jamnik
    • 1
  1. 1.Computer LaboratoryUniversity of CambridgeUK

Personalised recommendations