Advertisement

Logical and Geometrical Complementarities between Aristotelian Diagrams

  • Hans Smessaert
  • Lorenz Demey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8578)

Abstract

This paper concerns the Aristotelian relations of contradiction, contrariety, subcontrariety and subalternation between 14 contingent formulae, which can get a 2D or 3D visual representation by means of Aristotelian diagrams. The overall 3D diagram representing these Aristotelian relations is the rhombic dodecahedron (RDH), a polyhedron consisting of 14 vertices and 12 rhombic faces (Section 2). The ultimate aim is to study the various complementarities between Aristotelian diagrams inside the RDH. The crucial notions are therefore those of subdiagram and of nesting or embedding smaller diagrams into bigger ones. Three types of Aristotelian squares are characterised in terms of which types of contradictory diagonals they contain (Section 3). Secondly, any Aristotelian hexagon contains 3 squares (Section 4), and any Aristotelian octagon contains 4 hexagons (Section 5), so that different types of bigger diagrams can be distinguished in terms of which types of subdiagrams they contain. In a final part, the logical complementarities between 6 and 8 formulae are related to the geometrical complementarities between the 3D embeddings of hexagons and octagons inside the RDH (Section 6).

Keywords

Aristotelian relations square of oppositions hexagon of oppositions logical geometry 3D visualisation subdiagrams complementarity embedding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jacoby, P.: A Triangle of Opposites for Types of Propositions in Aristotelian Logic. The New Scholasticism 24(1), 32–56 (1950)CrossRefGoogle Scholar
  2. 2.
    Sesmat, A.: Logique II. Les Raisonnements. Hermann, Paris (1951)Google Scholar
  3. 3.
    Blanché, R.: Structures Intellectuelles. Essai sur l’organisation systématique des concepts. Librairie Philosophique J. Vrin, Paris (1969)Google Scholar
  4. 4.
    Demey, L.: Structures of Oppositions in Public Announcement Logic. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 313–339. Springer, Basel (2012)CrossRefGoogle Scholar
  5. 5.
    Smessaert, H.: On the 3D visualisation of logical relations. Logica Universalis 3(2), 303–332 (2009)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Smessaert, H.: Boolean differences between two hexagonal extensions of the logical Square of Oppositions. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS (LNAI), vol. 7352, pp. 193–199. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Fish, A., Flower, J.: Euler Diagram Decomposition. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 28–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Flower, J., Stapleton, G., Rodgers, P.: On the drawability of 3D Venn and Euler diagrams. Journal of Visual Languages and Computing (2013)Google Scholar
  9. 9.
    Urbas, M., Jamnik, M., Stapleton, G., Flower, J.: Speedith: A Diagrammatic Reasoner for Spider Diagrams. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS (LNAI), vol. 7352, pp. 163–177. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Cheng, P.C.-H.: Algebra Diagrams: A HANDi Introduction. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS (LNAI), vol. 7352, pp. 178–192. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Engelhardt, Y.: Objects and Spaces: The Visual Language of Graphics. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams 2006. LNCS (LNAI), vol. 4045, pp. 104–108. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Jin, Y., Esser, R., Janneck, J.W.: Describing the Syntax and Semantics of UML Statecharts in a Heterogeneous Modelling Environment. In: Hegarty, M., Meyer, B., Hari Narayanan, N. (eds.) Diagrams 2002. LNCS (LNAI), vol. 2317, pp. 320–334. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Sauriol, P.: Remarques sur la théorie de l’hexagone logique de Blanché. Dialogue 7, 374–390 (1968)CrossRefGoogle Scholar
  14. 14.
    Moretti, A.: The Geometry of Logical Opposition. Ph.D. thesis, University of Neuchâtel (2009)Google Scholar
  15. 15.
    Dubois, D., Prade, H.: From Blanché’s Hexagonal Organization of Concepts to Formal Concept Analysis and Possibility Theory. Logica Universalis 6, 149–169 (2012)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Coxeter, H.S.M.: Regular Polytopes. Dover Publications (1973)Google Scholar
  17. 17.
    Zellweger, S.: Untapped potential in Peirce’s iconic notation for the sixteen binary connectives. In: Hauser, N., Roberts, D.D., Evra, J.V. (eds.) Studies in the Logic of Charles Peirce, pp. 334–386. Indiana University Press (1997)Google Scholar
  18. 18.
    Demey, L., Smessaert, H.: The relationship between Aristotelian and Hasse diagrams. In: Dwyer, T., Purchase, H.C., Delaney, A. (eds.) Diagrams 2014. LNCS (LNAI), vol. 8578, pp. 215–229. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Smessaert, H., Demey, L.: Logical Geometries and Information in the Square of Oppositions. Submitted research paper (2014)Google Scholar
  20. 20.
    Khomskii, Y.: William of Sherwood, singular propositions and the hexagon of opposition. In: Béziau, J.Y., Payette, G. (eds.) New Perspectives on the Square of Opposition, pp. 43–60. Peter Lang, Bern (2011)Google Scholar
  21. 21.
    Kretzmann, N.: William of Sherwood’s Introduction to Logic. Minnesota Archive Editions, Minneapolis (1966)Google Scholar
  22. 22.
    Czezowski, T.: On certain peculiarities of singular propositions. Mind 64(255), 392–395 (1955)CrossRefGoogle Scholar
  23. 23.
    Pellissier, R.: Setting n-opposition. Logica Universalis 2(2), 235–263 (2008)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Béziau, J.Y.: New light on the square of oppositions and its nameless corner. Logical Investigations 10, 218–232 (2003)Google Scholar
  25. 25.
    Hughes, G.: The modal logic of John Buridan. In: Atti del Congresso Internazionale di Storia Della Logica: La Teorie Delle Modalitá, pp. 93–111. CLUEB, Bologna (1989)Google Scholar
  26. 26.
    Read, S.: John Buridan’s Theory of Consequence and his Octagons of Opposition. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 93–110. Springer, Basel (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hans Smessaert
    • 1
  • Lorenz Demey
    • 2
  1. 1.Department of LinguisticsKU LeuvenBelgium
  2. 2.Center for Logic and Analytic PhilosophyKU LeuvenBelgium

Personalised recommendations