Advertisement

The Relationship between Aristotelian and Hasse Diagrams

  • Lorenz Demey
  • Hans Smessaert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8578)

Abstract

The aim of this paper is to study the relationship between two important families of diagrams that are used in logic, viz. Aristotelian diagrams (such as the well-known ‘square of oppositions’) and Hasse diagrams. We discuss some obvious similarities and dissimilarities between both types of diagrams, and argue that they are in line with general cognitive principles of diagram design. Next, we show that a much deeper connection can be established for Aristotelian/Hasse diagrams that are closed under the Boolean operators. We consider the Boolean algebra \(\mathbb{B}_n\) with 2 n elements, whose Hasse diagram can be drawn as an n-dimensional hypercube. Both the Aristotelian and the Hasse diagram for \(\mathbb{B}_n\) can be seen as (n − 1)-dimensional vertex-first projections of this hypercube; whether the diagram is Aristotelian or Hasse depends on the projection axis. We show how this account provides a unified explanation of the (dis)similarities between both types of diagrams, and illustrate it with some well-known Aristotelian/Hasse diagrams for \(\mathbb{B}_3\) and \(\mathbb{B}_4\).

Keywords

Aristotelian diagram Hasse diagram square of oppositions logical geometry hexagon rhombic dodecahedron hypercube 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Howse, J., Stapleton, G., Taylor, J.: Spider diagrams. LMS Journal of Computation and Mathematics 8, 145–194 (2005)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Rodgers, P.: A survey of Euler diagrams. J. of Visual Lang. & Comp. (in press)Google Scholar
  3. 3.
    Shin, S.J.: The Iconic Logic of Peirce’s Graphs. MIT Press (2002)Google Scholar
  4. 4.
    Stapleton, G.: A survey of reasoning systems based on Euler diagrams. Electronic Notes in Theoretical Computer Science 134, 127–151 (2005)CrossRefGoogle Scholar
  5. 5.
    Stapleton, G., Howse, J., Rodgers, P.: A graph theoretic approach to general Euler diagram drawing. Theoretical Computer Science 411, 91–112 (2010)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge U. P. (2002)Google Scholar
  7. 7.
    Demey, L.: Algebraic aspects of duality diagrams. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS, vol. 7352, pp. 300–302. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Demey, L.: Structures of oppositions for public announcement logic. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 313–339. Springer (2012)Google Scholar
  9. 9.
    Moretti, A.: The Geometry of Logical Opposition. Ph.D. thesis, Neuchâtel (2009)Google Scholar
  10. 10.
    Smessaert, H.: Boolean differences between two hexagonal extensions of the logical square of oppositions. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS (LNAI), vol. 7352, pp. 193–199. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Smessaert, H.: The classical Aristotelian hexagon versus the modern duality hexagon. Logica Universalis 6, 171–199 (2012)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Smessaert, H., Demey, L.: Logical geometries and information in the square of oppositions. Forthcoming in Journal of Logic, Language and Information (2014) Google Scholar
  13. 13.
    Zellweger, S.: Untapped potential in Peirce’s iconic notation for the sixteen binary connectives. In: Houser, N., Roberts, D.D., Van Evra, J. (eds.) Studies in the Logic of Charles Peirce, pp. 334–386. Indiana University Press (1997)Google Scholar
  14. 14.
    Hurley, P.J.: A Concise Introduction to Logic, 11th edn. Wadsworth (2012)Google Scholar
  15. 15.
    Bernhard, P.: Visualizations of the square of opposition. Log. Univ. 2, 31–41 (2008)MATHMathSciNetGoogle Scholar
  16. 16.
    Seuren, P.: The Logic of Language. Oxford University Press (2010)Google Scholar
  17. 17.
    Carnielli, W., Pizzi, C.: Modalities and Multimodalities. Springer (2008)Google Scholar
  18. 18.
    Lenzen, W.: How to square knowledge and belief. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 305–311. Springer (2012)Google Scholar
  19. 19.
    McNamara, P.: Deontic logic. In: Stanford Encyclopedia of Philosophy (2010)Google Scholar
  20. 20.
    Moretti, A.: The geometry of standard deontic logic. Log. Univ. 3, 19–57 (2009)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Blanché, R.: Structures Intellectuelles. Vrin (1966)Google Scholar
  22. 22.
    Jacoby, P.: A triangle of opposites for types of propositions in Aristotelian logic. New Scholasticism 24, 32–56 (1950)CrossRefGoogle Scholar
  23. 23.
    Sesmat, A.: Logique II. Les Raisonnements. La syllogistique. Hermann (1951)Google Scholar
  24. 24.
    Béziau, J.Y.: New light on the square of oppositions and its nameless corner. Logical Investigations 10, 218–232 (2003)Google Scholar
  25. 25.
    Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI), vol. 3626. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Chatti, S., Schang, F.: The cube, the square and the problem of existential import. History and Philosophy of Logic 32, 101–132 (2013)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Smessaert, H.: On the 3D visualisation of logical relations. Logica Universalis 3, 303–332 (2009)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Smessaert, H., Demey, L.: Logical and geometrical complementarities between Aristotelian diagrams. In: Dwyer, T., Purchase, H.C., Delaney, A. (eds.) Diagrams 2014. LNCS (LNAI), vol. 8578, pp. 248–262. Springer, Heidelberg (2014)Google Scholar
  29. 29.
    Foldes, S.: A characterization of hypercubes. Discr. Math. 17, 155–159 (1977)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Harary, F., Hayes, J.P., Wu, H.J.: A survey of the theory of hypercube graphs. Computers & Mathematics with Applications 15, 277–289 (1988)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Kauffman, L.H.: The mathematics of Charles Sanders Peirce. Cybernetics & Human Knowing 8, 79–110 (2001)Google Scholar
  32. 32.
    Flower, J., Stapleton, G., Rodgers, P.: On the drawability of 3D Venn and Euler diagrams. Journal of Visual Languages & Computing (in press)Google Scholar
  33. 33.
    Sauriol, P.: Remarques sur la théorie de l’hexagone logique de Blanché. Dialogue 7, 374–390 (1968)CrossRefGoogle Scholar
  34. 34.
    Tversky, B.: Prolegomenon to scientific visualizations. In: Gilbert, J.K. (ed.) Visualization in Science Education, pp. 29–42. Springer (2005)Google Scholar
  35. 35.
    Tversky, B.: Visualizing thought. Topics in Cognitive Science 3, 499–535 (2011)CrossRefGoogle Scholar
  36. 36.
    Strang, G.: Introduction to Linear Algebra. Wellesley-Cambridge Press (2009)Google Scholar
  37. 37.
    Givant, S., Halmos, P.: Introduction to Boolean Algebras. Springer (2009)Google Scholar
  38. 38.
    Smessaert, H., Demey, L.: The unreasonable effectiveness of bitstrings in logical geometry. In: 4th World Congress on the Square of Opposition (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lorenz Demey
    • 1
  • Hans Smessaert
    • 2
  1. 1.Center for Logic and Analytic PhilosophyKU LeuvenBelgium
  2. 2.Department of LinguisticsKU LeuvenBelgium

Personalised recommendations