Advertisement

International Conference on Theory and Application of Diagrams

Diagrams 2014: Diagrammatic Representation and Inference pp 198-212 | Cite as

Neural Mechanisms of Global Reading

  • Takeshi Sugio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8578)

Abstract

The neural mechanisms underlying global reading on tabular representations were investigated using the task-switching paradigm in event-related functional magnetic resonance imaging. Participants were required to make an appropriate response based on the latest task cue using stimuli tabulated in five rows and five columns with labels. The task was either local or global, and critical events included both cue and target events, which enabled separate analyses of the preparation and execution stages of each type of reading process. Neuroimaging results revealed differential activations between local and global tasks in both preparation and execution stages. For the preparation stage, global cues led to larger activation in the extrastriate cortex, which has been shown as the neural basis of selective attention in the literature. For the execution stage, the left middle temporal gyrus and inferior parietal lobule were more activated in the local task. These areas comprise an object-based attentional selection network, which serves to attend to a particular element in the table that changed with each event. For the global task, the left inferior frontal junction showed high activation, suggesting that the task demanded more cognitive control. The implications of these findings are discussed with respect to the characteristics of global reading.

Keywords

global reading fMRI cognitive control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tufte, E.R.: Envisioning Information. Graphics Press, Cheshire (1990)Google Scholar
  2. 2.
    Palmer, S., Rock, I.: Rethinking perceptual organization: The role of uniform connectedness. Psychonomic Bulletin & Review 1(1), 29–55 (1994)CrossRefGoogle Scholar
  3. 3.
    Watson, S.E., Kramer, A.F.: Object-based visual selective attention and perceptual organization. Perception & Psychophysics 61(1), 31–49 (1999)CrossRefGoogle Scholar
  4. 4.
    Sugio, T., Shimojima, A., Katagiri, Y.: Psychological evidence of mental segmentation in table reading. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS (LNAI), vol. 7352, pp. 124–131. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Miller, E.K., Cohen, J.D.: An integrative theory of prefrontal cortex function. Annual Review of Neuroscience 24, 167–202 (2001)CrossRefGoogle Scholar
  6. 6.
    Shomstein, S., Yantis, S.: Object-based attention: Sensory modulation or priprity setting? Perception & Psychophysics 64(1), 41–51 (2002)CrossRefGoogle Scholar
  7. 7.
    Rogers, R.D., Monsell, S.: Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General 124(2), 207–231 (1995)CrossRefGoogle Scholar
  8. 8.
    Chiu, Y.C., Yantis, S.: A domain-independent source of cognitive control for task sets: Shifting attention and switching categorization rules. The Journal of Neuroscience 29(12), 3930–3938 (2009)CrossRefGoogle Scholar
  9. 9.
    Osaka, N., Osaka, M., Kondo, H., Morishita, M., Fukuyama, H., Shibasaki, H.: The neural basis of executive function in working memory: an fMRI study based on individual differences. NeuroImage 21, 623–631 (2004)CrossRefGoogle Scholar
  10. 10.
    Demeyere, N., Humphreys, G.W.: Distributed and focused attention: neuropsychological evidence for separate attentional mechanisms when counting and estimating. Journal of Experimental Psychology: Human Perception and Performance 33(5), 1076–1088 (2007)Google Scholar
  11. 11.
    Demeyere, N., Lestou, V., Humphreys, G.W.: Neuropsychological evidence for a dissociation in counting and subitizing. Neurocase 16(3), 219–237 (2010)CrossRefGoogle Scholar
  12. 12.
    Demeyere, N., Rotshtein, P., Humphreys, G.W.: The neuroanatomy of visual enumeration: Differentiating necessary neural correlates for subitizing versus counting in a neuropsychological voxel-based morphometry study. Journal of Cognitive Neuroscience 24(4), 948–964 (2012)CrossRefGoogle Scholar
  13. 13.
    Vuokko, E., Niemivirta, M., Helenius, P.: Cortical activation patterns during subitizing and counting. Brain Research 1497, 40–52 (2013)CrossRefGoogle Scholar
  14. 14.
    Ashby, F.G.: Statistical Analysis of fMRI Data. The MIT Press, Cambridge (2011)Google Scholar
  15. 15.
    Friston, K.J., Frith, C.D., Turner, R., Frackowiak, R.S.: Characterizing evoked hemodynamics with fMRI. NeuroImage 2, 157–165 (1995)CrossRefGoogle Scholar
  16. 16.
    Eickhoff, S.B., Stephan, K.E., Mohlberg, H., Grefkes, C., Fink, G.R., Amunts, K., Zilles, K.: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25, 1325–1335 (2005)CrossRefGoogle Scholar
  17. 17.
    Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience 3, 201–215 (2002)CrossRefGoogle Scholar
  18. 18.
    Shomstein, S.: Cognitive functions of the posterior parietal cortex: top-down and bottom-up attentional control. Frontiers in Integrative Neuroscience 6, 1–7 (2012)CrossRefGoogle Scholar
  19. 19.
    Kastner, S., De Weerd, P., Desimone, R., Ungerleider, L.G.: Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282, 108–111 (1998)CrossRefGoogle Scholar
  20. 20.
    Rao, A.W., Chelazzi, L., Connor, C.E., Conway, B.R., Fujita, I., Gallant, J.L., Lu, H., Vanduffel, W.: Toward a unified theory of visual area V4. Neuron 74, 12–29 (2012)CrossRefGoogle Scholar
  21. 21.
    D’Esposito, M., Aguirre, G.K., Zarahn, E., Ballard, D., Shin, R.K., Lease, J.: Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research 7, 1–13 (1998)CrossRefGoogle Scholar
  22. 22.
    Wade, A., Augath, M., Logothetis, N., Wandell, B.: fMRI measurements of color in macaque and human. Journal of Vision 8(10), 1–19 (2008)CrossRefGoogle Scholar
  23. 23.
    Arrington, C.M., Carr, T.H., Mayer, A.R., Rao, S.M.: Neural mechanisms of visual attention: Object-based selection of a region in space. Journal of Cognitive Neuroscience 12, 106–117 (2000)CrossRefGoogle Scholar
  24. 24.
    Geng, J.J., Vossel, S.: Re-evaluating the role of TPJ in attentional control: Contextual updating? Neuroscience and Biobehavioral Reviews 37, 2608–2620 (2013)CrossRefGoogle Scholar
  25. 25.
    Paus, T.: Location and function of the human frontal eye-field: A selective review. Neuropsychologia 34(6), 475–483 (1996)CrossRefGoogle Scholar
  26. 26.
    Serences, J.T., Yantis, S.: Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex. Cerebral Cortex 17, 284–293 (2007)CrossRefGoogle Scholar
  27. 27.
    Kelley, T.A., Serences, J.T., Giesbrecht, B., Yantis, S.: Cortical mechanisms for shifting and holding visuospatial attention. Cerebral Cortex 18, 114–125 (2008)CrossRefGoogle Scholar
  28. 28.
    Derrfuss, J., Brass, M., Neumann, J., von Cramon, D.Y.: Involvement of the inferior frontal junction in cognitive control: Meta-analyses of switching and stroop studies. Human Brain Mapping 25, 22–34 (2005)CrossRefGoogle Scholar
  29. 29.
    Navon, D.: Forest before trees: The precedence of global features in visual perception. Cognitive Psychology 9(3), 353–383 (1977)CrossRefGoogle Scholar
  30. 30.
    Spence, C.: Crossmodal correspondences: A tutorial review. Attention, Perception, & Psychophysics 73(4), 971–995 (2011)CrossRefGoogle Scholar
  31. 31.
    Becker, L., van Rompay, T.J.L., Schifferstein, H.N.J., Galetzka, M.: Tough package, strong taste: The influence of packaging design on taste impressions and product evaluations. Food Quality and Preference 22, 17–23 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Takeshi Sugio
    • 1
  1. 1.Doshisha UniversityKyotanabeJapan

Personalised recommendations