Advertisement

International Conference on Theory and Application of Diagrams

Diagrams 2014: Diagrammatic Representation and Inference pp 146-160 | Cite as

Visualizing Sets: An Empirical Comparison of Diagram Types

  • Peter Chapman
  • Gem Stapleton
  • Peter Rodgers
  • Luana Micallef
  • Andrew Blake
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8578)

Abstract

There are a range of diagram types that can be used to visualize sets. However, there is a significant lack of insight into which is the most effective visualization. To address this knowledge gap, this paper empirically evaluates four diagram types: Venn diagrams, Euler diagrams with shading, Euler diagrams without shading, and the less well-known linear diagrams. By collecting performance data (time to complete tasks and error rate), through crowdsourcing, we establish that linear diagrams outperform the other three diagram types in terms of both task completion time and number of errors. Venn diagrams perform worst from both perspectives. Thus, we provide evidence that linear diagrams are the most effective of these four diagram types for representing sets.

Keywords

set visualization linear diagrams Venn diagrams Euler diagrams 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Larkin, J., Simon, H.: Why a diagram is (sometimes) worth ten thousand words. J. of Cognitive Science 11, 65–99 (1987)CrossRefGoogle Scholar
  2. 2.
    Rodgers, P., Zhang, L., Purchase, H.: Wellformedness properties in Euler diagrams: Which should be used? IEEE Trans. on Visualization and Computer Graphics 18(7), 1089–1100 (2012)CrossRefGoogle Scholar
  3. 3.
    Couturat, L.: Opuscules et fragments inédits de Leibniz. Felix Alcan (1903)Google Scholar
  4. 4.
    Wittenburg, K., Lanning, T., Heinrichs, M., Stanton, M.: Parallel Bargrams for Consumer-based Information Exploration and Choice. In: 14th ACM Symposium on User Interface Software and Technology, pp. 51–60 (1985, 2001)Google Scholar
  5. 5.
    Hofmann, H., Siebes, A., Wilhelm, A.: Visualizing Association Rules with Interactive Mosaic Plots. In: ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 227–235 (2000)Google Scholar
  6. 6.
    Moody, D.: The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual Notations in Software Engineering. IEEE Trans. on Software Engineering 35(6), 756–779 (2009)CrossRefGoogle Scholar
  7. 7.
    Benoy, F., Rodgers, P.: Evaluating the comprehension of Euler diagrams. In: 11th Int. Conf. on Information Visualization, pp. 771–778. IEEE (2007)Google Scholar
  8. 8.
    Blake, A., Stapleton, G., Rodgers, P., Cheek, L., Howse, J.: Does the orientation of an Euler diagram affect user comprehension? In: 18th Int. Conf. on Distributed Multimedia Systems, pp. 185–190. Knowledge Systems Institute (2012)Google Scholar
  9. 9.
    Grawemeyer, B.: Evaluation of ERST – an external representation selection tutor. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams 2006. LNCS (LNAI), vol. 4045, pp. 154–167. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Sato, Y., Mineshima, K.: The Efficacy of Diagrams in Syllogistic Reasoning: A Case of Linear Diagrams. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS, vol. 7352, pp. 352–355. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Sato, Y., Mineshima, K., Takemura, R.: The Efficacy of Euler and Venn Diagrams in Deductive Reasoning: Empirical Findings. In: Goel, A.K., Jamnik, M., Narayanan, N.H. (eds.) Diagrams 2010. LNCS, vol. 6170, pp. 6–22. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Isenberg, P., Bezerianos, A., Dragicevic, P., Fekete, J.: A study on dual-scale data charts. IEEE Tran. on Visualization and Computer Graphics, 2469–2478 (2011)CrossRefGoogle Scholar
  13. 13.
    Puchase, H.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Riche, N., Dwyer, T.: Untangling Euler diagrams. IEEE Tran. on Visualization and Computer Graphics 16(6), 1090–1099 (2010)CrossRefGoogle Scholar
  15. 15.
    Harrower, M., Brewer, C.: ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps. The Cartographic Journal 40(1), 27–37 (2003)CrossRefGoogle Scholar
  16. 16.
    Silva, S., Madeira, J., Santos, B.S.: There is more to color scales than meets the eye: A review on the use of color in visualization. In: Information Visualization, pp. 943–950. IEEE (2007)Google Scholar
  17. 17.
    Ihaka, R.: Colour for presentation graphics. In: 3rd Int. Workshop on Distributed Statistical Computing (2003)Google Scholar
  18. 18.
    Gurr, C.: Effective diagrammatic communication: Syntactic, semantic and pragmatic issues. J. of Visual Languages and Computing 10(4), 317–342 (1999)CrossRefGoogle Scholar
  19. 19.
    Stapleton, G., Rodgers, P., Howse, J., Taylor, J.: Properties of Euler diagrams. In: Proc. of Layout of Software Engineering Diagrams, pp. 2–16. EASST (2007)Google Scholar
  20. 20.
    Ruskey, F.: A survey of Venn diagrams. Electronic J. of Combinatorics (1997), http://www.combinatorics.org/Surveys/ds5/VennEJC.html
  21. 21.
    Chen, J., Menezes, N., Bradley, A., North, T.: Opportunities for crowdsourcing research on amazon mechanical turk. Human Factors 5(3) (2011)Google Scholar
  22. 22.
    Paolacci, G., Chandler, J., Ipeirotis, P.G.: Running experiments on amazon mechanical turk. Judgment and Decision Making 5(5), 411–419 (2010)Google Scholar
  23. 23.
    Heer, J., Bostock, M.: Crowdsourcing graphical perception: Using mechanical turk to assess visualization design. In: ACM Conf. on Human Factors in Computing Systems, pp. 203–212 (2010)Google Scholar
  24. 24.
    Micallef, L., Dragicevic, P., Fekete, J.D.: Assessing the Effect of Visualizations on Bayesian Reasoning through Crowdsourcing. IEEE Trans. on Visualization and Computer Graphics 18(12), 2536–2545 (2012)CrossRefGoogle Scholar
  25. 25.
    Oppenheimer, D., Meyvis, T., Davidenko, N.: Instructional manipulation checks: Detecting satisficing to increase statistical power. J. of Experimental Social Psychology 45(4), 867–872 (2009)CrossRefGoogle Scholar
  26. 26.
    Wagemans, J., Elder, J., Kubovy, M., Palmer, S., Peterson, M., Singh, M.: A century of gestalt psychology in visual perception: I. perceptual grouping and figure-ground organisation. Computer Vision, Graphics, and Image Processing 31, 156–177 (1985)CrossRefGoogle Scholar
  27. 27.
    Feldman, J.: Formation of visual “objects” in the early computation of spatial relations. Perception and Psychophysics 69(5), 816–827 (2007)CrossRefGoogle Scholar
  28. 28.
    Bertin, J.: Semiology of Graphics. Uni. of Wisconsin Press (1983)Google Scholar
  29. 29.
    Purchase, H.: Experimental Human Computer Interaction: A Practical Guide with Visual Examples. Cambridge University Press (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peter Chapman
    • 1
  • Gem Stapleton
    • 1
  • Peter Rodgers
    • 2
  • Luana Micallef
    • 2
  • Andrew Blake
    • 1
  1. 1.University of BrightonUK
  2. 2.University of KentUK

Personalised recommendations