Flow Cytometry in Cancer Immunotherapy: Applications, Quality Assurance, and Future

  • Cécile Gouttefangeas
  • Steffen Walter
  • Marij J. P. Welters
  • Christian Ottensmeier
  • Sjoerd H. van der Burg
  • Cedrik M. Britten
  • Cliburn ChanEmail author


Cancer immunotherapy seeks to elicit or augment the antitumor immune response in a patient in order to enlist the help of the patient’s own immune system for tumor control. In this context, immune monitoring provides evidence of immunogenicity, guides the choice and dosage of antigens, assesses the effects of immune modulators and therapy combinations, and has the potential to reveal early biomarkers of clinical efficacy. In view of their role in the anticancer immune response, the quantity and quality of tumor antigen-specific effector CD4+ and CD8+ T cells are of particular interest, and characterization of regulatory T cells and myeloid-derived suppressor cells is increasingly relevant. The canonical multiparameter assay for the characterization of immune cells is polychromatic flow cytometry, and it is ubiquitously used for immune monitoring in preclinical tumor immunology and in cancer immunotherapy trials. This chapter describes the main flow cytometry methods being applied in cancer immunotherapy, with an emphasis on recent progress in the field, challenges associated with quality control, its promise to reveal biomarkers of clinical efficacy, and further developments that are likely to be rapidly implemented in routine cancer immunology.


Cancer Immunotherapy Intracellular Cytokine Staining Immune Monitoring Cancer Immunology Peripheral Blood Mononuclear Cell Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



CG, SW, MJP, SvB, CO, and CB are members of the steering committee of the CIMT Immunoguiding Program (CIP). The CIP and CC are supported by a grant of the Wallace Coulter Foundation (Miami, Florida). CG is supported by a grant of the Deutsche Forschungsgemeinschaft SFB685. CC is supported by grants to the Duke University Center for AIDS Research and EQAPOL program funded by NIH grant 5P30 AI064518 and NIH contract HHSN272201000045C, respectively. We thank S Heidu for excellent technical assistance.


  1. 1.
    Zola H, Swart B, Banham A, Barry S, Beare A, Bensussan A, et al. CD molecules 2006 – human cell differentiation molecules. J Immunol Methods. 2007;319(1–2):1–5.PubMedGoogle Scholar
  2. 2.
    Van Damme N, Baeten D, De Vos M, Demetter P, Elewaut D, Mielants H, et al. Chemical agents and enzymes used for the extraction of gut lymphocytes influence flow cytometric detection of T cell surface markers. J Immunol Methods. 2000;236(1–2):27–35.PubMedGoogle Scholar
  3. 3.
    Donnenberg VS, Landreneau RJ, Pfeifer ME, Donnenberg AD. Flow cytometric determination of stem/progenitor content in epithelial tissues: an example from nonsmall lung cancer and normal lung. Cytom A. 2013;83(1):141–9.Google Scholar
  4. 4.
    Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012;18:1254–61.PubMedGoogle Scholar
  5. 5.
    Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR, et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med. 1997;186(9):1407–18.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Caruso A, Licenziati S, Corulli M, Canaris AD, De Francesco MA, Fiorentini S, et al. Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation. Cytometry. 1997;27(1):71–6.PubMedGoogle Scholar
  7. 7.
    Chattopadhyay PK, Roederer M. Good cell, bad cell: flow cytometry reveals T-cell subsets important in HIV disease. Cytom A. 2010;77(7):614–22.Google Scholar
  8. 8.
    Zielinski CE, Corti D, Mele F, Pinto D, Lanzavecchia A, Sallusto F. Dissecting the human immunologic memory for pathogens. Immunol Rev. 2011;240(1):40–51.PubMedGoogle Scholar
  9. 9.
    de Vos van Steenwijk PJ, Heusinkveld M, Ramwadhdoebe TH, Lowik MJ, van der Hulst JM, Goedemans R, et al. An unexpectedly large polyclonal repertoire of HPV-specific T cells is poised for action in patients with cervical cancer. Cancer Res. 2010;70(7):2707–17.Google Scholar
  10. 10.
    Romero P, Zippelius A, Kurth I, Pittet MJ, Touvrey C, Iancu EM, et al. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol. 2007;178(7):4112–9.PubMedGoogle Scholar
  11. 11.
    Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17(10):1290–7.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6754):708–12.PubMedGoogle Scholar
  13. 13.
    Appay V, van Lier RA, Sallusto F, Roederer M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytom A. 2008;73(11):975–83.Google Scholar
  14. 14.
    Derhovanessian E, Maier AB, Hahnel K, Beck R, de Craen AJ, Slagboom EP, et al. Infection with cytomegalovirus but not herpes simplex virus induces the accumulation of late-differentiated CD4+ and CD8+ T-cells in humans. J Gen Virol. 2011;92(Pt 12):2746–56.PubMedGoogle Scholar
  15. 15.
    Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996;274(5284):94–6.PubMedGoogle Scholar
  16. 16.
    Melenhorst JJ, Scheinberg P, Chattopadhyay PK, Lissina A, Gostick E, Cole DK, et al. Detection of low avidity CD8(+) T cell populations with coreceptor-enhanced peptide-major histocompatibility complex class I tetramers. J Immunol Methods. 2008;338(1–2):31–9.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Chattopadhyay PK, Melenhorst JJ, Ladell K, Gostick E, Scheinberg P, Barrett AJ, et al. Techniques to improve the direct ex vivo detection of low frequency antigen-specific CD8+ T cells with peptide-major histocompatibility complex class I tetramers. Cytom A. 2008;73(11):1001–9.Google Scholar
  18. 18.
    Wooldridge L, Lissina A, Cole DK, van den Berg HA, Price DA, Sewell AK. Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology. 2009;126(2):147–64.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Slingluff Jr CL, Petroni GR, Olson WC, Smolkin ME, Ross MI, Haas NB, et al. Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8+ and CD4+ T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin Cancer Res. 2009;15(22):7036–44.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F, et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest. 2005;115(3):739–46.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Coulie PG, Karanikas V, Colau D, Lurquin C, Landry C, Marchand M, et al. A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc Natl Acad Sci U S A. 2001;98(18):10290–5.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Filipazzi P, Pilla L, Mariani L, Patuzzo R, Castelli C, Camisaschi C, et al. Limited induction of tumor cross-reactive T cells without a measurable clinical benefit in early melanoma patients vaccinated with human leukocyte antigen class I-modified peptides. Clin Cancer Res. 2012;18(23):6485–96.PubMedGoogle Scholar
  23. 23.
    Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L, et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med. 2002;8(4):379–85.PubMedGoogle Scholar
  24. 24.
    Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, Barba L, et al. Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Invest. 2011;121(6):2350–60.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Davis C, Wu X, Li W, Fan H, Reddy M. Stability of immunophenotypic markers in fixed peripheral blood for extended analysis using flow cytometry. J Immunol Methods. 2011;363(2):158–65.PubMedGoogle Scholar
  26. 26.
    Cecconi V, Moro M, Del Mare S, Dellabona P, Casorati G. Use of MHC class II tetramers to investigate CD4+ T cell responses: problems and solutions. Cytom A. 2008;73(11):1010–8.Google Scholar
  27. 27.
    Widenmeyer M, Griesemann H, Stevanovic S, Feyerabend S, Klein R, Attig S, et al. Promiscuous survivin peptide induces robust CD4+ T-cell responses in the majority of vaccinated cancer patients. Int J Cancer. 2012;131(1):140–9.PubMedGoogle Scholar
  28. 28.
    Welters MJ, Kenter GG, de Vos van Steenwijk PJ, Lowik MJ, Berends-van der Meer DM, Essahsah F, et al. Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci U S A. 2010;107(26):11895–9.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Weide B, Zelba H, Derhovanessian E, Pflugfelder A, Eigentler TK, Di Giacomo AM, et al. Functional T cells targeting NY-ESO-1 or Melan-A are predictive for survival of patients with distant melanoma metastasis. J Clin Oncol. 2012;30(15):1835–41.PubMedGoogle Scholar
  30. 30.
    Seder RA, Darrah PA, Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol. 2008;8(4):247–58.PubMedGoogle Scholar
  31. 31.
    Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med. 2007;204(6):1405–16.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Attig S, Hennenlotter J, Pawelec G, Klein G, Koch SD, Pircher H, et al. Simultaneous infiltration of polyfunctional effector and suppressor T cells into renal cell carcinomas. Cancer Res. 2009;69(21):8412–9.PubMedGoogle Scholar
  33. 33.
    Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF, Ritter E, et al. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci U S A. 2008;105(51):20410–5.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Bull M, Lee D, Stucky J, Chiu YL, Rubin A, Horton H, et al. Defining blood processing parameters for optimal detection of cryopreserved antigen-specific responses for HIV vaccine trials. J Immunol Methods. 2007;322(1–2):57–69.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Lamoreaux L, Roederer M, Koup R. Intracellular cytokine optimization and standard operating procedure. Nat Protoc. 2006;1(3):1507–16.PubMedGoogle Scholar
  36. 36.
    Singh SK, Meyering M, Ramwadhdoebe TH, Stynenbosch LF, Redeker A, Kuppen PJ, et al. The simultaneous ex vivo detection of low-frequency antigen-specific CD4+ and CD8+ T-cell responses using overlapping peptide pools. Cancer Immunol Immunother. 2012;61(11):1953–63.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Hermans IF, Silk JD, Yang J, Palmowski MJ, Gileadi U, McCarthy C, et al. The VITAL assay: a versatile fluorometric technique for assessing CTL- and NKT-mediated cytotoxicity against multiple targets in vitro and in vivo. J Immunol Methods. 2004;285(1):25–40.PubMedGoogle Scholar
  38. 38.
    Zaritskaya L, Shurin MR, Sayers TJ, Malyguine AM. New flow cytometric assays for monitoring cell-mediated cytotoxicity. Expert Rev Vaccines. 2010;9(6):601–16.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Laske K, Shebzukhov YV, Grosse-Hovest L, Kuprash DV, Khlgatian SV, Koroleva EP, et al. Alternative variants of human HYDIN are novel cancer-associated antigens recognized by adaptive immunity. Cancer Immunol Res. 2013;1(3):190–200.Google Scholar
  40. 40.
    Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods. 2003;281(1–2):65–78.PubMedGoogle Scholar
  41. 41.
    Lyons AB, Blake SJ, Doherty KV. Flow cytometric analysis of cell division by dilution of CFSE and related dyes. Curr Protoc Cytom. 2013. Chapter 9:Unit9.11.Google Scholar
  42. 42.
    Soares A, Govender L, Hughes J, Mavakla W, de Kock M, Barnard C, et al. Novel application of Ki67 to quantify antigen-specific in vitro lymphoproliferation. J Immunol Methods. 2010;362(1–2):43–50.Google Scholar
  43. 43.
    Putz T, Ramoner R, Gander H, Rahm A, Bartsch G, Holtl L, et al. Monitoring of CD4+ and CD8+ T-cell responses after dendritic cell-based immunotherapy using CFSE dye dilution analysis. J Clin Immunol. 2004;24(6):653–63.PubMedGoogle Scholar
  44. 44.
    Maino VC, Maecker HT. Cytokine flow cytometry: a multiparametric approach for assessing cellular immune responses to viral antigens. Clin Immunol. 2004;110(3):222–31.PubMedGoogle Scholar
  45. 45.
    Defawe OD, Fong Y, Vasilyeva E, Pickett M, Carter DK, Gabriel E, et al. Optimization and qualification of a multiplex bead array to assess cytokine and chemokine production by vaccine-specific cells. J Immunol Methods. 2012;382(1–2):117–28.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Pohla H, Buchner A, Stadlbauer B, Frankenberger B, Stevanovic S, Walter S, et al. High immune response rates and decreased frequencies of regulatory T cells in metastatic renal cell carcinoma patients after tumor cell vaccination. Mol Med. 2012;18:1499–508.PubMedCentralGoogle Scholar
  47. 47.
    Aubin JE. Autofluorescence of viable cultured mammalian cells. J Histochem Cytochem. 1979;27(1):36–43.PubMedGoogle Scholar
  48. 48.
    Roederer M, Murphy RF. Cell-by-cell autofluorescence correction for low signal-to-noise systems: application to epidermal growth factor endocytosis by 3T3 fibroblasts. Cytometry. 1986;7(6):558–65.PubMedGoogle Scholar
  49. 49.
    Truneh A, Machy P. Detection of very low receptor numbers on cells by flow cytometry using a sensitive staining method. Cytometry. 1987;8(6):562–7.PubMedGoogle Scholar
  50. 50.
    Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol. 2004;4(8):648–55.PubMedGoogle Scholar
  51. 51.
    Baumgarth N, Roederer M. A practical approach to multicolor flow cytometry for immunophenotyping. J Immunol Methods. 2000;243(1–2):77–97.PubMedGoogle Scholar
  52. 52.
    Perfetto SP, Roederer M. Increased immunofluorescence sensitivity using 532 nm laser excitation. Cytom A. 2007;71(2):73–9.Google Scholar
  53. 53.
    Nguyen R, Perfetto S, Mahnke YD, Chattopadhyay P, Roederer M. Quantifying spillover spreading for comparing instrument performance and aiding in multicolor panel design. Cytom A. 2013;83(3):306–15.Google Scholar
  54. 54.
    Mahnke YD, Roederer M. Optimizing a multicolor immunophenotyping assay. Clin Lab Med. 2007;27(3):469–85. v.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Lundberg E, Sundberg M, Graslund T, Uhlen M, Svahn HA. A novel method for reproducible fluorescent labeling of small amounts of antibodies on solid phase. J Immunol Methods. 2007;322(1–2):40–9.PubMedGoogle Scholar
  56. 56.
    Buchwalow IB, Böcker W. Antibody labeling and the choice of label immunohistochemistry basics and methods. Heidelberg: Springer; 2010. p. 9–12.Google Scholar
  57. 57.
    Roederer M, Tarnok A. OMIPs – orchestrating multiplexity in polychromatic science. Cytom A. 2010;77(9):811–2.Google Scholar
  58. 58.
    Perfetto SP, Ambrozak D, Nguyen R, Chattopadhyay PK, Roederer M. Quality assurance for polychromatic flow cytometry using a suite of calibration beads. Nat Protoc. 2012;7(12):2067–79.PubMedGoogle Scholar
  59. 59.
    Nomura L, Maino VC, Maecker HT. Standardization and optimization of multiparameter intracellular cytokine staining. Cytom A. 2008;73(11):984–91.Google Scholar
  60. 60.
    Singh SK, Tummers B, Schumacher TN, Gomez R, Franken KL, Verdegaal EM, et al. The development of standard samples with a defined number of antigen-specific T cells to harmonize T cell assays: a proof-of-principle study. Cancer Immunol Immunother. 2013;62(3):489–501.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Fox BA, Schendel DJ, Butterfield LH, Aamdal S, Allison JP, Ascierto PA, et al. Defining the critical hurdles in cancer immunotherapy. J Transl Med. 2011;9(1):214.PubMedCentralPubMedGoogle Scholar
  62. 62.
    van der Burg SH, Kalos M, Gouttefangeas C, Janetzki S, Ottensmeier C, Welters MJ, et al. Harmonization of immune biomarker assays for clinical studies. Sci Transl Med. 2011;3(108):108ps44.PubMedGoogle Scholar
  63. 63.
    de Vries IJ, Bernsen MR, Lesterhuis WJ, Scharenborg NM, Strijk SP, Gerritsen MJ, et al. Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol. 2005;23(24):5779–87.PubMedGoogle Scholar
  64. 64.
    Slingluff Jr CL, Petroni GR, Chianese-Bullock KA, Smolkin ME, Hibbitts S, Murphy C, et al. Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. Clin Cancer Res. 2007;13(21):6386–95.PubMedGoogle Scholar
  65. 65.
    Kirkwood JM, Lee S, Moschos SJ, Albertini MR, Michalak JC, Sander C, et al. Immunogenicity and antitumor effects of vaccination with peptide vaccine+/-granulocyte-monocyte colony-stimulating factor and/or IFN-alpha2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group phase II trial E1696. Clin Cancer Res. 2009;15(4):1443–51.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Dangoor A, Lorigan P, Keilholz U, Schadendorf D, Harris A, Ottensmeier C, et al. Clinical and immunological responses in metastatic melanoma patients vaccinated with a high-dose poly-epitope vaccine. Cancer Immunol Immunother. 2010;59(6):863–73.PubMedGoogle Scholar
  67. 67.
    Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Britten CM, Janetzki S, van der Burg SH, Gouttefangeas C, Hoos A. Toward the harmonization of immune monitoring in clinical trials: quo vadis? Cancer Immunol Immunother. 2008;57(3):285–8.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Scheibenbogen C, Romero P, Rivoltini L, Herr W, Schmittel A, Cerottini JC, et al. Quantitation of antigen-reactive T cells in peripheral blood by IFNgamma-ELISPOT assay and chromium-release assay: a four-centre comparative trial. J Immunol Methods. 2000;244(1–2):81–9.PubMedGoogle Scholar
  70. 70.
    Cox JH, Ferrari G, Kalams SA, Lopaczynski W, Oden N, D’souza MP. Results of an ELISPOT proficiency panel conducted in 11 laboratories participating in international human immunodeficiency virus type 1 vaccine trials. AIDS Res Hum Retrovir. 2005;21(1):68–81.PubMedGoogle Scholar
  71. 71.
    Jaimes MC, Maecker HT, Yan M, Maino VC, Hanley MB, Greer A, et al. Quality assurance of intracellular cytokine staining assays: analysis of multiple rounds of proficiency testing. J Immunol Methods. 2011;363(2):143–57.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Mander A, Gouttefangeas C, Ottensmeier C, Welters MJ, Low L, van der Burg SH, et al. Serum is not required for ex vivo IFN-gamma ELISPOT: a collaborative study of different protocols from the European CIMT immunoguiding program. Cancer Immunol Immunother. 2010;59(4):619–27.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Welters MJ, Gouttefangeas C, Ramwadhdoebe TH, Letsch A, Ottensmeier CH, Britten CM, et al. Harmonization of the intracellular cytokine staining assay. Cancer Immunol Immunother. 2012;61(7):967–78.PubMedCentralPubMedGoogle Scholar
  74. 74.
    McNeil LK, Price L, Britten CM, Jaimes M, Maecker H, Odunsi K, Matsuzaki J, Staats JS, et al. A harmonized approach to intracellular cytokine staining gating: results from an international multi-consortia proficiency panel conducted by the Cancer Immunotherapy Consortium (CIC/CRI). Cytom A. 2013;83(8):728–38.Google Scholar
  75. 75.
    Britten CM, Gouttefangeas C, Welters MJ, Pawelec G, Koch S, Ottensmeier C, et al. The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays. Cancer Immunol Immunother. 2008;57(3):289–302.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Attig S, Price L, Janetzki S, Kalos M, Pride M, McNeil L, et al. A critical assessment for the value of markers to gate-out undesired events in HLA-peptide multimer staining protocols. J Transl Med. 2011;9:108.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001;29(4):365–71.PubMedGoogle Scholar
  78. 78.
    Deutsch EW, Ball CA, Berman JJ, Bova GS, Brazma A, Bumgarner RE, et al. Minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). Nat Biotechnol. 2008;26(3):305–12.PubMedGoogle Scholar
  79. 79.
    Lee JA, Spidlen J, Boyce K, Cai J, Crosbie N, Dalphin M, et al. MIFlowCyt: the minimum information about a flow cytometry experiment. Cytom A. 2008;73(10):926–30.Google Scholar
  80. 80.
    Brazma A, Robinson A, Cameron G, Ashburner M. One-stop shop for microarray data. Nature. 2000;403(6771):699–700.PubMedGoogle Scholar
  81. 81.
    Maecker HT, McCoy Jr JP, Amos M, Elliott J, Gaigalas A, Wang L, et al. A model for harmonizing flow cytometry in clinical trials. Nat Immunol. 2010;11(11):975–8.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Janetzki S, Britten CM, Kalos M, Levitsky HI, Maecker HT, Melief CJ, et al. “MIATA”-minimal information about T cell assays. Immunity. 2009;31(4):527–8.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Britten CM, Janetzki S, van der Burg SH, Huber C, Kalos M, Levitsky HI, et al. Minimal information about T cell assays: the process of reaching the community of T cell immunologists in cancer and beyond. Cancer Immunol Immunother. 2011;60(1):15–22.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Britten CM, Janetzki S, Butterfield LH, Ferrari G, Gouttefangeas C, Huber C, et al. T cell assays and MIATA: the essential minimum for maximum impact. Immunity. 2012;37(1):1–2.PubMedGoogle Scholar
  85. 85.
    Hoos A, Janetzki S, Britten CM. Advancing the field of cancer immunotherapy: MIATA consensus guidelines become available to improve data reporting and interpretation for T-cell immune monitoring. Oncoimmunology. 2012;1(9):1457–9.PubMedCentralPubMedGoogle Scholar
  86. 86.
    World Health Organization. Good Clinical Laboratory Practice (GCLP) 2009. Available from:
  87. 87.
    GCP Inspectors Working Group EMA. Reflection paper for laboratories that perform the analysis for evaluation of clinical trial samples 2012. Available from:
  88. 88.
    Medicines and Healthcare products Regulatory Agency. Good clinical practice. 2009. Available from:
  89. 89.
    Butterfield LH, Palucka AK, Britten CM, Dhodapkar MV, Hakansson L, Janetzki S, et al. Recommendations from the iSBTc-SITC/FDA/NCI workshop on immunotherapy biomarkers. Clin Cancer Res. 2011;17(10):3064–76.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Oldaker TA. Quality control in clinical flow cytometry. Clin Lab Med. 2007;27(3):671–85. viii.PubMedGoogle Scholar
  91. 91.
    Kalina T, Flores-Montero J, van der Velden V, Martin-Ayuso M, Bottcher S, Ritgen M, et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26(9):1986–2010.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Kierstead LS, Dubey S, Meyer B, Tobery TW, Mogg R, Fernandez VR, et al. Enhanced rates and magnitude of immune responses detected against an HIV vaccine: effect of using an optimized process for isolating PBMC. AIDS Res Hum Retrovir. 2007;23(1):86–92.PubMedGoogle Scholar
  93. 93.
    Smith JG, Joseph HR, Green T, Field JA, Wooters M, Kaufhold RM, et al. Establishing acceptance criteria for cell-mediated-immunity assays using frozen peripheral blood mononuclear cells stored under optimal and suboptimal conditions. Clin Vaccine Immunol. 2007;14(5):527–37.PubMedCentralPubMedGoogle Scholar
  94. 94.
    McKenna KC, Beatty KM, Vicetti MR, Bilonick RA. Delayed processing of blood increases the frequency of activated CD11b+CD15+ granulocytes which inhibit T cell function. J Immunol Methods. 2009;341(1–2):68–75.PubMedGoogle Scholar
  95. 95.
    Maecker HT, Rinfret A, D’Souza P, Darden J, Roig E, Landry C, et al. Standardization of cytokine flow cytometry assays. BMC Immunol. 2005;6:13.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Bashashati A, Brinkman RR. A survey of flow cytometry data analysis methods. Adv Bioinformatics. 2009;584603.Google Scholar
  97. 97.
    Qiu P. Inferring phenotypic properties from single-cell characteristics. PLoS One. 2012;7(5):e37038.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Aghaeepour N, Finak G, Flow CAPC, Consortium D, Hoos H, Mosmann TR, et al. Critical assessment of automated flow cytometry data analysis techniques. Nat Methods. 2013;10(3):228–38.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Finak G, Jiang W, Pardo J, Asare A, Gottardo R. QUAliFiER: an automated pipeline for quality assessment of gated flow cytometry data. BMC Bioinform. 2012;13:252.Google Scholar
  100. 100.
    Pyne S, Hu X, Wang K, Rossin E, Lin TI, Maier LM, et al. Automated high-dimensional flow cytometric data analysis. Proc Natl Acad Sci U S A. 2009;106(21):8519–24.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Chan C, Feng F, Ottinger J, Foster D, West M, Kepler TB. Statistical mixture modeling for cell subtype identification in flow cytometry. Cytom A. 2008;73A(8):693–701.Google Scholar
  102. 102.
    Lo K, Brinkman RR, Gottardo R. Automated gating of flow cytometry data via robust model-based clustering. Cytom A. 2008;73(4):321–32.Google Scholar
  103. 103.
    Lin L, Chan C, Hadrup SR, Froesig TM, Wang Q, West M. Hierarchical Bayesian mixture modelling for antigen-specific T-cell subtyping in combinatorially encoded flow cytometry studies. Stat Appl Genet Mol Biol. 2013;12(3):309–31.Google Scholar
  104. 104.
    Cron A, Gouttefangeas C, Frelinger J, Lin L, Singh SK, Britten CM, Welters MJP, van der Burg SH, West M, Chan C. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples. PLoS Comput Biol. 2013;9(7):e1003130.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Aghaeepour N, Nikolic R, Hoos HH, Brinkman RR. Rapid cell population identification in flow cytometry data. Cytom A. 2011;79(1):6–13.Google Scholar
  106. 106.
    Ge Y, Sealfon SC. FlowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics. 2012;28(15):2052–8.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Qian Y, Wei C, Eun-Hyung Lee F, Campbell J, Halliley J, Lee JA, et al. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytom B Clin Cytom. 2010;78 Suppl 1:S69–82.Google Scholar
  108. 108.
    Scheuermann R, Qian Y, Wei C, Sanz I. ImmPort FLOCK: automated cell population identification in high dimensional flow cytometry data. J Immunol. 2009;182:42–17.Google Scholar
  109. 109.
    Suchard MA, Wang Q, Chan C, Frelinger J, Cron AJ, West M. Understanding GPU programming for statistical computation: studies in massively parallel massive mixtures. J Comput Graph Stat. 2010;19:419–38.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Sarkar D, Le Meur N, Gentleman R. Using flowViz to visualize flow cytometry data. Bioinformatics. 2008;24(6):878–9.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Qiu P, Simonds EF, Bendall SC, Gibbs Jr KD, Bruggner RV, Linderman MD, et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol. 2011;29(10):886–91.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Amir EA, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, et al. ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013;31(6):545–52.PubMedCentralGoogle Scholar
  113. 113.
    Manolopoulou I, Chan C, West M. Selection sampling from large data sets for targeted inference in mixture modeling. Bayesian Anal. 2010;5(3):1–22.PubMedCentralPubMedGoogle Scholar
  114. 114.
    van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254(5038):1643–7.PubMedGoogle Scholar
  115. 115.
    Benlalam H, Labarriere N, Linard B, Derre L, Diez E, Pandolfino MC, et al. Comprehensive analysis of the frequency of recognition of melanoma-associated antigen (MAA) by CD8 melanoma infiltrating lymphocytes (TIL): implications for immunotherapy. Eur J Immunol. 2001;31(7):2007–15.PubMedGoogle Scholar
  116. 116.
    Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D, et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA. 2005;102(44):16013–8.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van Veluw J, Hombrink P, et al. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods. 2009;6(7):520–6.PubMedGoogle Scholar
  118. 118.
    Newell EW, Klein LO, Yu W, Davis MM. Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat Methods. 2009;6(7):497–9.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Andersen RS, Kvistborg P, Frosig TM, Pedersen NW, Lyngaa R, Bakker AH, et al. Parallel detection of antigen-specific T cell responses by combinatorial encoding of MHC multimers. Nat Protoc. 2012;7(5):891–902.PubMedGoogle Scholar
  120. 120.
    Kvistborg P, Shu CJ, Heemskerk B, Fankhauser M, Thrue CA, Toebes M, et al. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology. 2012;1(4):409–18.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Krutzik PO, Nolan GP. Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytom A. 2003;55(2):61–70.Google Scholar
  122. 122.
    Goldeck D, Low I, Shadan NB, Mustafah S, Pawelec G, Larbi A. Multi-parametric phospho-flow cytometry: a crucial tool for T lymphocyte signaling studies. Cytom A. 2013;83(3):265–72.Google Scholar
  123. 123.
    Longo DM, Louie B, Putta S, Evensen E, Ptacek J, Cordeiro J, et al. Single-cell network profiling of peripheral blood mononuclear cells from healthy donors reveals age- and race-associated differences in immune signaling pathway activation. J Immunol. 2012;188(4):1717–25.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Zea AH, Curti BD, Longo DL, Alvord WG, Strobl SL, Mizoguchi H, et al. Alterations in T cell receptor and signal transduction molecules in melanoma patients. Clin Cancer Res. 1995;1(11):1327–35.PubMedGoogle Scholar
  125. 125.
    Wang SF, Fouquet S, Chapon M, Salmon H, Regnier F, Labroquere K, et al. Early T cell signalling is reversibly altered in PD-1+ T lymphocytes infiltrating human tumors. PLoS One. 2011;6(3):e17621.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Chattopadhyay PK, Perfetto SP, Yu J, Roederer M. The use of quantum dot nanocrystals in multicolor flow cytometry. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(4):334–48.PubMedGoogle Scholar
  127. 127.
    Chattopadhyay PK, Gaylord B, Palmer A, Jiang N, Raven MA, Lewis G, et al. Brilliant violet fluorophores: a new class of ultrabright fluorescent compounds for immunofluorescence experiments. Cytom A. 2012;81(6):456–66.Google Scholar
  128. 128.
    Jennings TL, Becker-Catania SG, Triulzi RC, Tao G, Scott B, Sapsford KE, et al. Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis. ACS Nano. 2011;5(7):5579–93.PubMedGoogle Scholar
  129. 129.
    Bendall SC, Simonds EF, Qiu P, Amir E, Krutzik PO, Finck R, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332(6030):687–96.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity. 2012;36(1):142–52.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Cécile Gouttefangeas
    • 1
  • Steffen Walter
    • 2
  • Marij J. P. Welters
    • 3
  • Christian Ottensmeier
    • 4
  • Sjoerd H. van der Burg
    • 3
  • Cedrik M. Britten
    • 5
  • Cliburn Chan
    • 6
    Email author
  1. 1.Department of Immunology, Institute for Cell BiologyUniversity of TübingenTübingenGermany
  2. 2.Immatics Biotechnologies GmbHTuebingenGermany
  3. 3.Experimental Cancer Immunology and Therapy, Department of Clinical Oncology (K1-P)Leiden University Medical CenterLeidenThe Netherlands
  4. 4.University of SouthamptonSouthamptonUK
  5. 5.TRONTranslational Oncology at the University Medical Center of the Johannes-Gutenberg University gGmbH and Association for Cancer Immunotherapy (CIMT)MainzGermany
  6. 6.Department of Biostatistics and BioinformaticsDuke University Medical CenterDurhamUSA

Personalised recommendations