Envisioning the Application of Systems Biology in Cancer Immunology

  • Julio VeraEmail author
  • Shailendra K. Gupta
  • Olaf Wolkenhauer
  • Gerold Schuler


Biomedical research is nowadays concerned with the investigation of complex biological networks, in which dozens to thousands of proteins, genes, and miRNAs interact to control cellular- or tissue-level phenotypes. Investigation of these complex biological networks requires the use of various experimental methodologies that generate massive amounts of quantitative data. In this scenario, systems biology emerged a decade ago as a methodological approach that combines quantitative experimental data, mathematical modeling, and other tools from computational biology, aiming to understand the regulation of these complex biochemical systems.

The interaction between tumors and the immune system is not an exception to this scenario. The immune system is by definition a multi-scale system not only because it involves biochemical networks that regulate the fate of immune cells but also because immune cells communicate with each other by direct contact or through secretion of local or global signals. Furthermore, tumor and immune cells communicate, and this interaction is affected by the features of the microenvironment in which the tumor is hosted. Altogether, we are envisioning a complex multi-scale biological system, whose analysis requires a systemic view to succeed integrating massive amounts of quantitative experimental data coming from different temporal and spatial scales.

In this book chapter, we introduce the elements of the systems biology approach. Furthermore, we discuss some published results that suggest how systems biology can be used in the context of oncology and tumor immunology, with a focus on the development and assessment of anticancer therapies. To facilitate the reading, this chapter contains a glossary of systems biology terms.


Biochemical Network Cleavage Motif Quantitative Experimental Data Complex Biochemical System Predictive Model Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the German Federal Ministry of Education and Research (BMBF) as part of the projects eBio:miRSys [0316175A to JV] and eBio:SysMet [0316171 to SKG].


  1. 1.
    Vera J, Wolkenhauer O. A system biology approach to understand functional activity of cell communication systems. Methods Cell Biol. 2008;90:399–415.PubMedCrossRefGoogle Scholar
  2. 2.
    Brooks JD. Translational genomics: the challenge of developing cancer biomarkers. Genome Res. 2012;22(2):183–7.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature. 2000;406(6795):536–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.CrossRefGoogle Scholar
  5. 5.
    Quackenbush J. Computational approaches to analysis of DNA microarray data. Yearb Med Inform. 2006;1:91–103.Google Scholar
  6. 6.
    Vera J, Wolkenhauer O. Mathematical tools in cancer signalling systems biology. In: Cesario A, Marcus F, editors. Cancer systems biology, bioinformatics and medicine. Dordrecht: Springer; 2011. p. 185–212.CrossRefGoogle Scholar
  7. 7.
    Reynolds AR, Tischer C, Verveer PJ, Rocks O, Bastiaens PI. EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat Cell Biol. 2003;5(5):447–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Vera J, Schmitz U, Lai X, Engelmann D, Khan FM, Wolkenhauer O, Pützer BM. Kinetic modeling-based detection of genetic signatures that provide chemoresistance via the E2F1-p73/DNp73-miR-205 network. Cancer Res. 2013;73(12):3511–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Alexopoulos LG, Saez-Rodriguez J, Cosgrove BD, Lauffenburger DA, Sorger PK. Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes. Mol Cell Proteomics. 2010;9(9):1849–65.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Rehm M, Huber HJ, Dussmann H, Prehn JH. Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J. 2006;25(18):4338–49.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Vera J, Bachmann J, Pfeifer AC, Becker V, Hormiga JA, Darias NV, Timmer J, Klingmüller U, Wolkenhauer O. A systems biology approach to analyse amplification in the JAK2-STAT5 signalling pathway. BMC Syst Biol. 2008;2:38.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Schoeberl B, Pace EA, Fitzgerald JB, Harms BD, Xu L, Nie L, Linggi B, Kalra A, Paragas V, Bukhalid R, Grantcharova V, Kohli N, West KA, Leszczyniecka M, Feldhaus MJ, Kudla AJ, Nielsen UB. Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal. 2009;2(77):ra31.PubMedCrossRefGoogle Scholar
  13. 13.
    Chmielecki J, Foo J, Oxnard GR, Hutchinson K, Ohashi K, Somwar R, et al. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci Transl Med. 2011;3(90):90ra59.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Witz IP. Tumor-microenvironment interactions: dangerous liaisons. Adv Cancer Res. 2008;100:203–29.PubMedCrossRefGoogle Scholar
  15. 15.
    Gilbert LA, Hemann MT. DNA damage-mediated induction of a chemoresistant niche. Cell. 2010;143(3):355–66.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Perfahl H, Byrne HM, Chen T, Estrella V, Alarcón T, Lapin A, et al. Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PLoS One. 2011;6(4):e14790.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Byrne HM. Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer. 2010;10(3):221–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Segata N, Blanzieri E, Priami C. Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data. J Integr Bioinform. 2008;5(1):87.Google Scholar
  19. 19.
    Nikolov S, Vera J, Schmitz U, Wolkenhauer O. A model-based strategy to investigate the role of microRNA regulation in cancer signalling networks. Theory Biosci. 2011;130(1):55–69.PubMedCrossRefGoogle Scholar
  20. 20.
    Lai X, Schmitz U, Gupta SK, Bhattacharya A, Kunz M, Wolkenhauer O, Vera J. Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs. Nucleic Acids Res. 2012;40(18):8818–34.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Marin-Sanguino A, Gupta SK, Voit EO, Vera J. Biochemical pathway modeling tools for drug target detection in cancer and other complex diseases. Methods Enzymol. 2011;487:319–69.PubMedCrossRefGoogle Scholar
  22. 22.
    Wong E, Baur B, Quader S, Huang C-H. Biological network motif detection: principles and practice. Brief Bioinform. 2011;13(2):202–15.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Khan FM, Schmitz U, Nikolov S, Engelmann D, Pützer BM, Wolkenhauer O, et al. Hybrid modeling of the crosstalk between signaling and transcriptional networks using ordinary differential equations and multi-valued logic. Biochim Biophys Acta. 2014;1844(1 Pt B):289–98.PubMedCrossRefGoogle Scholar
  24. 24.
    Vera J, Rath O, Balsa-Canto E, Banga JR, Kolch W, Wolkenhauer O. Investigating dynamics of inhibitory and feedback loops in ERK signalling using power-law models. Mol Biosyst. 2010;6(11):2174–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Nahta R, Esteva FJ. Herceptin: mechanisms of action and resistance. Cancer Lett. 2006;232(2):123–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Pappalardo F, Chiacchio F, Motta S. Cancer vaccines: state of the art of the computational modeling approaches. Biomed Res Int. 2013;2013:106407.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Yaddanapudi K, Mitchell RA, Eaton JW. Cancer vaccines: looking to the future. Oncoimmunology. 2013;2(3):e23403.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480–9.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 2011;364(22).Google Scholar
  30. 30.
    Kenter GG, Welters MJP, Valentijn ARPM, Lowik MJG, van der Meer Berends DMA, Vloon APG, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 2009;361(19):1838–47.PubMedCrossRefGoogle Scholar
  31. 31.
    Stevenson FK, Ottensmeier CH, Johnson P, Zhu D, Buchan SL, McCann KJ, et al. DNA vaccines to attack cancer. Proc Natl Acad Sci U S A. 2004;101:14646–52.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Campbell CT, Gulley JL, Oyelaran O, Hodge JW, Schlom J, Gildersleeve JC. Serum antibodies to blood group A predict survival on PROSTVAC-VF. Clin Cancer Res. 2013;19(5):1290–9.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 2012;12(4):237–51.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Cheson BD. Ofatumumab, a novel anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. J Clin Oncol. 2010;28(21):3525–30.PubMedCrossRefGoogle Scholar
  35. 35.
    Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv Immunol. 2006;90:297–339.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Guo K, Li J, Tang JP, Tan CPB, Hong CW, Al-Aidaroos AQO, et al. Targeting intracellular oncoproteins with antibody therapy or vaccination. Sci Transl Med. 2011;3(99):99ra85.PubMedCrossRefGoogle Scholar
  37. 37.
    Hong CW, Zeng Q. Awaiting a new era of cancer immunotherapy. Cancer Res. 2012;72(15):3715–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Caballero OL, Chen Y-T. Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci. 2009;100(11):2014–21.PubMedCrossRefGoogle Scholar
  39. 39.
    Castle JC, Kreiter S, Diekmann J, Löwer M, van de Roemer N, de Graaf J, et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 2012;72(5):1081–91.PubMedCrossRefGoogle Scholar
  40. 40.
    Charoentong P, Angelova M, Efremova M, Gallasch R, Hackl H, Galon J, et al. Bioinformatics for cancer immunology and immunotherapy. Cancer Immunol Immunother. 2012;61(11):1885–903.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P. Human T cell responses against melanoma. Annu Rev Immunol. 2006;24:175–208.PubMedCrossRefGoogle Scholar
  42. 42.
    Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6(1):1–6.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Muñoz N, Castellsagué X, de González AB, Gissmann L. Chapter 1: HPV in the etiology of human cancer. Vaccine. 2006;24 Suppl 3:S3/1–10.Google Scholar
  44. 44.
    De Villiers E-M, Fauquet C, Broker TR, Bernard H-U, zur Hausen H. Classification of papillomaviruses. Virology. 2004;324(1):17–27.PubMedCrossRefGoogle Scholar
  45. 45.
    Dunne EF, Unger ER, Sternberg M, McQuillan G, Swan DC, Patel SS, et al. Prevalence of HPV infection among females in the United States. JAMA. 2007;297(8):813–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Wain G. The human papillomavirus (HPV) vaccine, HPV related diseases and cervical cancer in the post-reproductive years. Maturitas. 2010;65(3):205–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Gupta SK, Singh A, Srivastava M, Gupta SK, Akhoon BA. In silico DNA vaccine designing against human papillomavirus (HPV) causing cervical cancer. Vaccine. 2009;28(1):120–31.PubMedCrossRefGoogle Scholar
  48. 48.
    Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanović S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999;50(3–4):213–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003;12(5):1007–17.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Peters B, Sette A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics. 2005;6(1):132.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Bui H-H, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton K-A, et al. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics. 2005;57(5):304–14.PubMedCrossRefGoogle Scholar
  52. 52.
    Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 2000;28(1):292.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Klinman DM, Yamshchikov G, Ishigatsubo Y. Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol. 1997;158(8):3635–9.PubMedGoogle Scholar
  54. 54.
    Harish N, Gupta R, Agarwal P, Scaria V, Pillai B. DyNAVacS: an integrative tool for optimized DNA vaccine design. Nucleic Acids Res. 2006;34(Web Server issue):W264–6.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Dolenc I, Seemüller E, Baumeister W. Decelerated degradation of short peptides by the 20S proteasome. FEBS Lett. 1998;434(3):357–61.PubMedCrossRefGoogle Scholar
  56. 56.
    Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science. 1989;246(4928):382–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Donna LM, Kristala JP. Design of plasmid DNA constructs for vaccines. DNA vaccines. Methods Mol Med™. 2006;127:11–22.Google Scholar
  58. 58.
    Ashall L, Horton CA, Nelson DE, Paszek P, Harper CV, Sillitoe K, et al. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science. 2009;324(5924):242–6.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci U S A. 2008;105(50):19678–83.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Das J, Ho M, Zikherman J, Govern C, Yang M, Weiss A, et al. Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell. 2009;136(2):337–51.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Guebel DV, Schmitz U, Wolkenhauer O, Vera J. Analysis of cell adhesion during early stages of colon cancer based on an extended multi-valued logic approach. Mol Biosyst. 2012;8(4):1230–42.PubMedCrossRefGoogle Scholar
  62. 62.
    Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B, et al. A logical model provides insights into t cell receptor signaling. PLoS Comput Biol. 2007;3(8):e163.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Carbo A, Hontecillas R, Kronsteiner B, Viladomiu M, Pedragosa M, Lu P, et al. Systems modeling of molecular mechanisms controlling cytokine-driven CD4+ T cell differentiation and phenotype plasticity. PLoS Comput Biol. 2013;9(4):e1003027.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Pigliucci M. Genotype–phenotype mapping and the end of the “genes as blueprint” metaphor. Phil Trans R Soc B. 2010;365(1540):557–66.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Deisboeck TS, Wang Z, Macklin P, Cristini V. Multiscale cancer modeling. Annu Rev Biomed Eng. 2011;13:127–55.PubMedCrossRefGoogle Scholar
  66. 66.
    Ramis-Conde I, Drasdo D, Anderson ARA, Chaplain MAJ. Modeling the influence of the E-Cadherin-β-Catenin pathway in cancer cell invasion: a multiscale approach. Biophys J. 2008;95(1):155–65.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Pak Y, Zhang Y, Pastan I, Lee B. Antigen shedding may improve efficiencies for delivery of antibody-based anticancer agents in solid tumors. Cancer Res. 2012;72(13):3143–52.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Wolkenhauer O, Auffray C, Baltrusch S, Blüthgen N, Byrne H, Cascante M, et al. Systems biologists seek fuller integration of systems biology approaches in new cancer research programs. Cancer Res. 2010;70(1):12–3.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Wolkenhauer O, Auffray C, Jaster R, Steinhoff G, Dammann O. The road from systems biology to systems medicine. Pediatr Res [Internet]. [cited 17 Mar 2013]; 2013
  70. 70.
    Engel C, Scholz M, Loeffler M. A computational model of human granulopoiesis to simulate the hematotoxic effects of multicycle polychemotherapy. Blood. 2004;104(8):2323–31.PubMedCrossRefGoogle Scholar
  71. 71.
    Ribba B, Colin T, Schnell S. A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor Biol Med Model. 2006;3:7.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Foo J, Chmielecki J, Pao W, Michor F. Effects of pharmacokinetic processes and varied dosing schedules on the dynamics of acquired resistance to erlotinib in EGFR-mutant lung cancer. J Thorac Oncol. 2012;7(10):1583–93.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Ballesta A, Dulong S, Abbara C, Cohen B, Okyar A, Clairambault J, et al. A combined experimental and mathematical approach for molecular-based optimization of irinotecan circadian delivery. PLoS Comput Biol. 2011;7(9):e1002143.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Lévi F. Circadian chronotherapy for human cancers. Lancet Oncol. 2001;2(5):307–15.PubMedCrossRefGoogle Scholar
  75. 75.
    Vera J, Curto R, Cascante M, Torres NV. Detection of potential enzyme targets by metabolic modelling and optimization: application to a simple enzymopathy. Bioinformatics. 2007;23(17):2281–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Rateitschak K, Winter F, Lange F, Jaster R, Wolkenhauer O. Parameter identifiability and sensitivity analysis predict targets for enhancement of STAT1 activity in pancreatic cancer and stellate cells. PLoS Comput Biol. 2012;8(12):e1002815.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Kirouac DC, Du JY, Lahdenranta J, Overland R, Yarar D, Paragas V, et al. Computational modeling of ERBB2-amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors. Sci Signal. 2013;6(288):ra68.PubMedCrossRefGoogle Scholar
  78. 78.
    Kim PS, Lee PP. Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach. PLoS Comput Biol. 2012;8(10):e1002742.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Maley CC, Reid BJ, Forrest S. Cancer prevention strategies that address the evolutionary dynamics of neoplastic cells: simulating benign cell boosters and selection for chemosensitivity. Cancer Epidemiol Biomarkers Prev. 2004;13(8):1375–84.PubMedGoogle Scholar
  80. 80.
    Gatenby RA, Silva AS, Gillies RJ, Frieden BR. Adaptive therapy. Cancer Res. 2009;69(11):4894–903.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Silva AS, Kam Y, Khin ZP, Minton SE, Gillies RJ, Gatenby RA. Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 2012;72(24):6362–70.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Dubitzky W, Wolkenhauer O, Yokota H, Cho KH. Encyclopedia of systems biology. New York: Springer; 2013. ISBN 978-1-4419-9862-0.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Julio Vera
    • 1
    • 2
    Email author
  • Shailendra K. Gupta
    • 3
    • 4
  • Olaf Wolkenhauer
    • 3
  • Gerold Schuler
    • 2
  1. 1.Laboratory of Systems Tumor Immunology, Department of DermatologyUniversity Hospital ErlangenErlangenGermany
  2. 2.Department of Dermatology, Faculty of MedicineFriedrich Alexander Universität, University of Erlangen-NurnbergErlangenGermany
  3. 3.Department of Systems Biology and Bioinformatics, Institute of Computer ScienceUniversity of RostockRostockGermany
  4. 4.Department of BioinformaticsCSIR-Indian Institute of Toxicology ResearchLucknowIndia

Personalised recommendations