Advertisement

Darwin or Lamarck? Future Challenges in Evolutionary Algorithms for Knowledge Discovery and Data Mining

  • Katharina Holzinger
  • Vasile Palade
  • Raul Rabadan
  • Andreas Holzinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8401)

Abstract

Evolutionary Algorithms (EAs) are a fascinating branch of computational intelligence with much potential for use in many application areas. The fundamental principle of EAs is to use ideas inspired by the biological mechanisms observed in nature, such as selection and genetic changes, to find the best solution for a given optimization problem. Generally, EAs use iterative processes, by growing a population of solutions selected in a guided random search and using parallel processing, in order to achieve a desired result. Such population based approaches, for example particle swarm and ant colony optimization (inspired from biology), are among the most popular metaheuristic methods being used in machine learning, along with others such as the simulated annealing (inspired from thermodynamics). In this paper, we provide a short survey on the state-of-the-art of EAs, beginning with some background on the theory of evolution and contrasting the original ideas of Darwin and Lamarck; we then continue with a discussion on the analogy between biological and computational sciences, and briefly describe some fundamentals of EAs, including the Genetic Algorithms, Genetic Programming, Evolution Strategies, Swarm Intelligence Algorithms (i.e., Particle Swarm Optimization, Ant Colony Optimization, Bacteria Foraging Algorithms, Bees Algorithm, Invasive Weed Optimization), Memetic Search, Differential Evolution Search, Artificial Immune Systems, Gravitational Search Algorithm, Intelligent Water Drops Algorithm. We conclude with a short description of the usefulness of EAs for Knowledge Discovery and Data Mining tasks and present some open problems and challenges to further stimulate research.

Keywords

Evolutionary Algorithms Optimization Nature inspired computing Knowledge Discovery Data Mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Box, G.E.: Evolutionary operation: A method for increasing industrial productivity. Applied Statistics 6(2), 81–101 (1957)CrossRefGoogle Scholar
  2. 2.
    Holland, J.H.: Outline for a Logical Theory of Adaptive Systems. J. ACM 9(3), 297–314 (1962)zbMATHCrossRefGoogle Scholar
  3. 3.
    Hendy, M.D., Penny, D.: Branch an Bound Algorithms to determine minimal Evolutionary Trees. Mathematical Biosciences 59(2), 277–290 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Letunic, I., Bork, P.: Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 23(1), 127–128 (2007)CrossRefGoogle Scholar
  5. 5.
    Darwin, C.: On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London (1859)Google Scholar
  6. 6.
    Hoffmeister, F.: Scalable Parallelism by Evolutionary Algorithms. Lecture Notes in Economics and Mathematical Systems 367, 177–198 (1991)zbMATHCrossRefGoogle Scholar
  7. 7.
    Cheng, A., Lim, C.C.: Optimizing System-On-Chip verifications with multi-objective genetic evolutionary algorithms. Journal of Industrial and Management Optimization 10(2), 383–396 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the Strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar
  9. 9.
    Waddington, C.H.: Canalization of development and the inheritance of acquired characters. Nature 150(3811), 563–565 (1942)CrossRefGoogle Scholar
  10. 10.
    Trygve, T.: Handbook of Epigenetics. Academic Press, San Diego (2011)Google Scholar
  11. 11.
    Fitch, W.M., Margoliash, E.: Construction of phylogenetic trees. Science 155(760), 279–284 (1967)CrossRefGoogle Scholar
  12. 12.
    Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4), 406–425 (1987)Google Scholar
  13. 13.
    Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M., Held, P.: Computational Intelligence: A Methodological Introduction. Springer, Heidelberg (2013)zbMATHCrossRefGoogle Scholar
  14. 14.
    Lollini, P.-L., Motta, S., Pappalardo, F.: Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator. BMC Bioinformatics 7(1), 352 (2006)CrossRefGoogle Scholar
  15. 15.
    Ritchie, M.D., Motsinger, A.A., Bush, W.S., Coffey, C.S., Moore, J.H.: Genetic programming neural networks: A powerful bioinformatics tool for human genetics. Applied Soft Computing 7(1), 471–479 (2007)CrossRefGoogle Scholar
  16. 16.
    Winstein, K., Balakrishnan, H.: TCP ex Machina: Computer-Generated Congestion Control. In: ACM SIGCOMM, pp. 123–134. ACM (2013)Google Scholar
  17. 17.
    Gen, M., Cheng, R.: Genetic algorithms and engineering optimization. John Wiley & Sons (2000)Google Scholar
  18. 18.
    Rafael, B., Oertl, S., Affenzeller, M., Wagner, S.: Music segmentation with genetic algorithms. In: 20th International Workshop on Database and Expert Systems Application, DEXA 2009, pp. 256–260. IEEE (2009)Google Scholar
  19. 19.
    Soupios, P., Akca, I., Mpogiatzis, P., Basokur, A., Papazachos, C.: Application of Genetic Algorithms in Seismic Tomography. In: EGU General Assembly Conference Abstracts, p. 1555 (2010)Google Scholar
  20. 20.
    Waddington, C.H.: Epigenetics and Evolution. Symposia of the Society for Experimental Biology 7, 186–199 (1953)Google Scholar
  21. 21.
    Jablonka, E.: Epigenetic inheritance and evolution: The Lamarckian dimension. Oxford University Press, Oxford (1999)Google Scholar
  22. 22.
    Tapscott, D.: Grown Up Digital: How the Net Generation is Changing Your World HC. Mcgraw-Hill (2008)Google Scholar
  23. 23.
    Bird, A.: Perceptions of epigenetics. Nature 447(7143), 396–398 (2007)CrossRefGoogle Scholar
  24. 24.
    Handel, A., Ramagopalan, S.: Is Lamarckian evolution relevant to medicine? BMC Medical Genetics 11(1), 73 (2010)CrossRefGoogle Scholar
  25. 25.
    Kiberstis, P.A.: All Eyes on Epigenetics. Science 335(6069), 637 (2012)CrossRefGoogle Scholar
  26. 26.
    Emmert-Streib, F., de Matos Simoes, R., Glazko, G., McDade, S., Haibe-Kains, B., Holzinger, A., Dehmer, M., Campbell, F.: Functional and genetic analysis of the colon cancer network. BMC Bioinformatics 15(suppl. 6), S6 (2014)Google Scholar
  27. 27.
    Freitas, A.A.: A survey of evolutionary algorithms for data mining and knowledge discovery. In: Advances in Evolutionary Computing, pp. 819–845. Springer (2003)Google Scholar
  28. 28.
    Coello Coello, C.A., Lechuga, M.S.: MOPSO: A proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 1051–1056. IEEE (2002)Google Scholar
  29. 29.
    Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Ruß, G., Steinbrecher, M.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze Vieweg+Teubner, Wiesbaden (2011)Google Scholar
  30. 30.
    Jansen, T.: Analyzing evolutionary algorithms: The computer science perspective. Springer Publishing Company (2013) (incorporated)Google Scholar
  31. 31.
    Yu, X., Gen, M.: Introduction to evolutionary algorithms. Springer, Heidelberg (2010)Google Scholar
  32. 32.
    Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer, Berlin (2010)Google Scholar
  33. 33.
    De Jong, K.A.: Evolutionary computation: A unified approach. MIT press, Cambridge (2006)Google Scholar
  34. 34.
    Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)CrossRefGoogle Scholar
  35. 35.
    Mitchell, T.M.: Machine learning, p. 267. McGraw-Hill, Boston (1997)zbMATHGoogle Scholar
  36. 36.
    Forrest, S.: Genetic algorithms: Principles of natural selection applied to computation. Science 261(5123), 872–878 (1993)CrossRefGoogle Scholar
  37. 37.
    Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems Man and Cybernetics 16(1), 122–128 (1986)CrossRefGoogle Scholar
  38. 38.
    Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Reading, MA (1989)Google Scholar
  39. 39.
    Mitchell, M.: An Introduction to Genetic Algorithms (Complex Adaptive Systems). MIT Press, Cambridge (1998)Google Scholar
  40. 40.
    Coley, D.A.: An introduction to Genetic Algorithms for Scientists and Engineers. World Scientific Publishing, Singapore (1999)CrossRefGoogle Scholar
  41. 41.
    Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Statistics and Computing 4(2), 87–112 (1994)CrossRefGoogle Scholar
  42. 42.
    Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neural networks in medical data mining. IEEE Transactions on Evolutionary Computation 5(1), 17–26 (2001)zbMATHCrossRefGoogle Scholar
  43. 43.
    Bäck, T., Hoffmeister, F., Schwefel, H.P.: A survey of evolution strategies. In: Proceedings of the 4th International Conference on Genetic Algorithms, pp. 2-9 (1991)Google Scholar
  44. 44.
    Ohkura, K., Matsumura, Y., Ueda, K.: Robust evolution strategies. Applied Intelligence 15(3), 153–169 (2001)zbMATHCrossRefGoogle Scholar
  45. 45.
    Huhse, J., Zell, A.: Evolution Strategy with Neighborhood Attraction–A Robust Evolution Strategy. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2001, pp. 1026–1033 (2001)Google Scholar
  46. 46.
    Auger, A., Hansen, N.: Theory of Evolution Strategies: A new perspective. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuristics: Foundations and Recent Developments, pp. 289–325. World Scientific Publishing, Singapore (2011)CrossRefGoogle Scholar
  47. 47.
    Beyer, H.-G., Schwefel, H.-P.: Evolution strategies–A comprehensive introduction. Natural Computing 1(1), 3–52 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Beyer, H.-G.: The theory of evolution strategies. Springer, Heidelberg (2001)Google Scholar
  49. 49.
    Martens, D., Baesens, B., Fawcett, T.: Editorial survey: Swarm intelligence for data mining. Mach. Learn. 82(1), 1–42 (2011)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Franks, N.R., Pratt, S.C., Mallon, E.B., Britton, N.F., Sumpter, D.J.T.: Information flow, opinion polling and collective intelligence in house-hunting social insects. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 357(1427), 1567–1583 (2002)CrossRefGoogle Scholar
  51. 51.
    Kennedy, J.F., Eberhart, R.C.: Swarm intelligence. Morgan Kaufmann, San Francisco (2001)Google Scholar
  52. 52.
    van’t Woud, J., Sandberg, J., Wielinga, B.J.: The Mars crowdsourcing experiment: Is crowdsourcing in the form of a serious game applicable for annotation in a semantically-rich research domain? In: 2011 16th International Conference on Computer Games (CGAMES), pp. 201–208. IEEE (2011)Google Scholar
  53. 53.
    Woolley, A.W., Chabris, C.F., Pentland, A., Hashmi, N., Malone, T.W.: Evidence for a Collective Intelligence Factor in the Performance of Human Groups. Science 330(6004), 686–688 (2010)CrossRefGoogle Scholar
  54. 54.
    Bonabeau, E.: Decisions 2.0: The power of collective intelligence. MIT Sloan Management Review 50(2), 45–52 (2009)Google Scholar
  55. 55.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: IEEE Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995 (1995)Google Scholar
  56. 56.
    Eberhart, R., Simpson, P., Dobbins, R.: Computational intelligence PC tools. Academic Press Professional, Inc. (1996)Google Scholar
  57. 57.
    Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, pp. 4104–4108. IEEE (1997)Google Scholar
  58. 58.
    Eberhart, R.C., Shi, Y.H.: Particle swarm optimization: Developments, applications and resources. IEEE, New York (2001)Google Scholar
  59. 59.
    Sim, K.M., Sun, W.H.: Ant colony optimization for routing and load-balancing: Survey and new directions. IEEE Trans. Syst. Man Cybern. Paart A-Syst. Hum. 33(5), 560–572 (2003)CrossRefGoogle Scholar
  60. 60.
    Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Proceedings of the First European Conference on Artificial Life, vol. 142, pp. 134–142 (1991)Google Scholar
  61. 61.
    Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  62. 62.
    Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoretical Computer Science 344(2-3), 243–278 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Colorni, A., Dorigo, M., Maniezzo, V.: An Investigation of some Properties of an “Ant Algorithm”. In: Parallel Problem Solving from Nature Conference (PPSN), pp. 509–520. Elsevier (1992)Google Scholar
  64. 64.
    Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization - Artificial ants as a computational intelligence technique. IEEE Computational Intelligence Magazine 1(4), 28–39 (2006)CrossRefGoogle Scholar
  65. 65.
    Chen, Y.J., Wong, M.L., Li, H.B.: Applying Ant Colony Optimization to configuring stacking ensembles for data mining. Expert Systems with Applications 41(6), 2688–2702 (2014)CrossRefGoogle Scholar
  66. 66.
    Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation 6(4), 321–332 (2002)zbMATHCrossRefGoogle Scholar
  67. 67.
    de Boer, P.A.J.: Advances in understanding E. coli cell fission. Current Opinion in Microbiology 13(6), 730–737 (2010)CrossRefGoogle Scholar
  68. 68.
    Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems 22(3), 52–67 (2002)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Kim, D.H., Abraham, A., Cho, J.H.: A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf. Sci. 177(18), 3918–3937 (2007)CrossRefGoogle Scholar
  70. 70.
    Tripathy, M., Mishra, S., Lai, L.L., Zhang, Q.P.: Transmission loss reduction based on FACTS and bacteria foraging algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 222–231. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  71. 71.
    Pirolli, P., Card, S.: Information foraging. Psychological Review 106(4), 643–675 (1999)CrossRefGoogle Scholar
  72. 72.
    Pirolli, P.: Rational analyses of information foraging on the Web. Cognitive Science 29(3), 343–373 (2005)CrossRefGoogle Scholar
  73. 73.
    Liu, J.M., Zhang, S.W., Yang, J.: Characterizing Web usage regularities with information foraging agents. IEEE Transactions on Knowledge and Data Engineering 16(5), 566–584 (2004)CrossRefGoogle Scholar
  74. 74.
    Goodwin, J.C., Cohen, T., Rindflesch, T.: Discovery by scent: Discovery browsing system based on the Information Foraging Theory. In: Gao, J., Dubitzky, W., Wu, C., Liebman, M., Alhaij, R., Ungar, L., Christianson, A., Hu, X. (eds.) 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops. IEEE, New York (2012)Google Scholar
  75. 75.
    Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The bees algorithm-a novel tool for complex optimisation problems. In: Proceedings of the 2nd Virtual International Conference on Intelligent Production Machines and Systems (IPROMS 2006), pp. 454–459 (2006)Google Scholar
  76. 76.
    Pham, D.T., Castellani, M.: The Bees Algorithm: Modelling foraging behaviour to solve continuous optimization problems. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science 223(12), 2919–2938 (2009)CrossRefGoogle Scholar
  77. 77.
    Ozbakir, L., Baykasoglu, A., Tapkan, P.: Bees algorithm for generalized assignment problem. Applied Mathematics and Computation 215(11), 3782–3795 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization 39(3), 459–471 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Tsai, H.C.: Integrating the artificial bee colony and bees algorithm to face constrained optimization problems. Inf. Sci. 258, 80–93 (2014)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Mehrabian, A.R., Lucas, C.: A novel numerical optimization algorithm inspired from weed colonization. Ecological Informatics 1(4), 355–366 (2006)CrossRefGoogle Scholar
  81. 81.
    Giri, R., Chowdhury, A., Ghosh, A., Das, S., Abraham, A., Snasel, V.: A Modified Invasive Weed Optimization Algorithm for training of feed- forward Neural Networks. In: 2010 IEEE International Conference on Systems, Man and Cybernetics (SMC 2010), pp. 3166–3173 (2010)Google Scholar
  82. 82.
    Huang, H., Ding, S., Zhu, H., Xu, X.: Invasive Weed Optimization Algorithm for Optimizating the Parameters of Mixed Kernel Twin Support Vector Machines. Journal of Computers 8(8) (2013)Google Scholar
  83. 83.
    Dawkins, R.: The selfish gene. Oxford University Press, Oxford (1976)Google Scholar
  84. 84.
    Corno, F., Reorda, M.S., Squillero, G.: The selfish gene algorithm: a new evolutionary optimization strategy. In: Proceedings of the 1998 ACM Symposium on Applied Computing, pp. 349–355. ACM (1998)Google Scholar
  85. 85.
    Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Transactions on Evolutionary Computation 7(2), 204–223 (2003)CrossRefGoogle Scholar
  86. 86.
    Simpson, G.G.: The Baldwin Effect. Evolution 7(2), 110–117 (1953)CrossRefGoogle Scholar
  87. 87.
    Kannan, S.S., Ramaraj, N.: A novel hybrid feature selection via Symmetrical Uncertainty ranking based local memetic search algorithm. Knowledge-Based Systems 23(6), 580–585 (2010)CrossRefGoogle Scholar
  88. 88.
    Molina, D., Lozano, M., Sanchez, A.M., Herrera, F.: Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-Chains. Soft Computing 15(11), 2201–2220 (2011)CrossRefGoogle Scholar
  89. 89.
    Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey Wolf Optimizer. Advances in Engineering Software 69, 46–61 (2014)CrossRefGoogle Scholar
  90. 90.
    Yin, J., Meng, H.: Artificial bee colony algorithm with chaotic differential evolution search. Computer Engineering and Applications 47(29), 27–30 (2011)Google Scholar
  91. 91.
    Jia, D.L., Zheng, G.X., Khan, M.K.: An effective memetic differential evolution algorithm based on chaotic local search. Inf. Sci. 181(15), 3175–3187 (2011)CrossRefGoogle Scholar
  92. 92.
    Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine learning. Physica D: Nonlinear Phenomena 22(1), 187–204 (1986)MathSciNetCrossRefGoogle Scholar
  93. 93.
    Parham, P.: The Immune System, 3rd edn. Garland Science, Taylor and Francis, New York (2009)Google Scholar
  94. 94.
    Dasgupta, D., Yu, S.H., Nino, F.: Recent Advances in Artificial Immune Systems: Models and Applications. Applied Soft Computing 11(2), 1574–1587 (2011)CrossRefGoogle Scholar
  95. 95.
    de Castro, L.N., Timmis, J.I.: Artificial immune systems as a novel soft computing paradigm. Soft Computing 7(8), 526–544 (2003)CrossRefGoogle Scholar
  96. 96.
    Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: A Gravitational Search Algorithm. Inf. Sci. 179(13), 2232–2248 (2009)zbMATHCrossRefGoogle Scholar
  97. 97.
    Dowlatshahi, M.B., Nezamabadi-Pour, H., Mashinchi, M.: A discrete gravitational search algorithm for solving combinatorial optimization problems. Inf. Sci. 258, 94–107 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: BGSA: Binary gravitational search algorithm. Natural Computing 9(3), 727–745 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)CrossRefGoogle Scholar
  100. 100.
    Shah-Hosseini, H.: The intelligent water drops algorithm: A nature-inspired swarm-based optimization algorithm. International Journal of Bio-Inspired Computation 1(1-2), 71–79 (2009)CrossRefGoogle Scholar
  101. 101.
    Shah-Hosseini, H.: Problem solving by intelligent water drops. IEEE, New York (2007)Google Scholar
  102. 102.
    Agarwal, K., Goyal, M., Srivastava, P.R.: Code coverage using intelligent water drop (IWD). International Journal of Bio-Inspired Computation 4(6), 392–402 (2012)CrossRefGoogle Scholar
  103. 103.
    Maimon, O., Rokach, L. (eds.): Data Mining and Knowledge Discovery Handbook. Springer, New York (2010)zbMATHGoogle Scholar
  104. 104.
    Holzinger, A., Blanchard, D., Bloice, M., Holzinger, K., Palade, V., Rabadan, R.: Darwin, Lamarck, or Baldwin: Applying Evolutionary Algorithms to Machine Learning Techniques. In: World Intelligence Congress (WIC). IEEE (2014) (in print)Google Scholar
  105. 105.
    Whitley, D.: An overview of evolutionary algorithms: Practical issues and common pitfalls. Information and Software Technology 43(14), 817–831 (2001)CrossRefGoogle Scholar
  106. 106.
    Pappa, G.L., Freitas, A.A.: Discovering new rule induction algorithms with grammar-based genetic programming. In: Soft Computing for Knowledge Discovery and Data Mining, pp. 133–152. Springer (2008)Google Scholar
  107. 107.
    Pappa, G.L., Freitas, A.A.: Evolving rule induction algorithms with multi-objective grammar-based genetic programming. Knowledge and Information Systems 19(3), 283–309 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Katharina Holzinger
    • 1
  • Vasile Palade
    • 2
    • 3
  • Raul Rabadan
    • 4
  • Andreas Holzinger
    • 1
  1. 1.Institute for Medical Informatics, Statistics and Documentation, Research Unit HCIMedical University GrazGrazAustria
  2. 2.Faculty of Engineering and ComputingCoventry UniversityCoventryUK
  3. 3.Department of Computer ScienceOxford UniversityOxfordUK
  4. 4.Department of Systems Biology and Department of Biomedical InformaticsColumbia UniversityNew YorkUS

Personalised recommendations