Multi-touch Graph-Based Interaction for Knowledge Discovery on Mobile Devices: State-of-the-Art and Future Challenges

  • Andreas Holzinger
  • Bernhard Ofner
  • Matthias Dehmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8401)

Abstract

Graph-based knowledge representation is a hot topic for some years and still has a lot of research potential, particularly in the advancement in the application of graph-theory for creating benefits in the biomedical domain. Graphs are most powerful tools to map structures within a given data set and to recognize relationships between specific data objects. Many advantages of graph-based data structures can be found in the applicability of methods from network analysis, topology and data mining (e.g. small-world phenomenon, cluster analysis). In this paper we present the state-of-the-art in graph-based approaches for multi-touch interaction on mobile devices and we highlight some open problems to stimulate further research and future developments. This is particularly important in the medical domain, as a conceptual graph analysis may provide novel insights on hidden patterns in data, hence support interactive knowledge discovery.

Keywords

Graph Based Interaction Graph Theory Graph-based Data Mining Multi-Touch Interactive Node-Link Graph Visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harary, F.: Structural models, An introduction to the theory of directed graphs. Wiley (1965)Google Scholar
  2. 2.
    Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)CrossRefGoogle Scholar
  3. 3.
    Dorogovtsev, S., Mendes, J.: Evolution of networks: From biological nets to the Internet and WWW. Oxford University Press (2003)Google Scholar
  4. 4.
    Dehmer, M., Emmert-Streib, F., Mehler, A.: Towards an Information Theory of Complex Networks: Statistical Methods and Applications. Birkhaeuser Boston (2011)Google Scholar
  5. 5.
    Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics - state-of-the-art, future challenges and research directions. BMC Bioinformatics 15(suppl. 6), 11 (2014)Google Scholar
  6. 6.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kleinberg, J.: Navigation in a small world. Nature 406(6798), 845–845 (2000)CrossRefGoogle Scholar
  8. 8.
    Koontz, W., Narendra, P., Fukunaga, K.: A graph-theoretic approach to nonparametric cluster analysis. IEEE Transactions on Computers 100(9), 936–944 (1976)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Wittkop, T., Emig, D., Truss, A., Albrecht, M., Boecker, S., Baumbach, J.: Comprehensive cluster analysis with transitivity clustering. Nature Protocols 6(3), 285–295 (2011)CrossRefGoogle Scholar
  10. 10.
    Holzinger, A.: Human computer interaction & knowledge discovery (hci-kdd): What is the benefit of bringing those two fields to work together? In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 319–328. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern Recognition 12(4), 261–268 (1980)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Holzinger, A.: Finger instead of mouse: Touch screens as a means of enhancing universal access. In: Carbonell, N., Stephanidis, C. (eds.) UI4ALL 2002. LNCS, vol. 2615, pp. 387–397. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Lee, S., Buxton, W., Smith, K.: A multi-touch three dimensional touch-sensitive tablet. In: ACM SIGCHI Bulletin, vol. 16, pp. 21–25. ACM (1985)Google Scholar
  14. 14.
    Cook, D., Holder, L.B.: Mining Graph Data. Wiley Interscience (2007)Google Scholar
  15. 15.
    Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms. ACM Computing Surveys (CSUR) 38(1), 2 (2006)CrossRefGoogle Scholar
  16. 16.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)MATHGoogle Scholar
  17. 17.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press (1997)Google Scholar
  18. 18.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  19. 19.
    Emmert-Streib, F., Dehmer, M.: Networks for systems biology: Conceptual connection of data and function. IET Systems Biology 5, 185–207 (2011)CrossRefGoogle Scholar
  20. 20.
    Bonchev, D., Mekenyan, O., Trinajstić, N.: Topological characterization of cyclic structures. International Journal of Quantum Chemistry 17(5), 845–893 (1980)CrossRefGoogle Scholar
  21. 21.
    Schutte, M., Dehmer, M.: Large-scale analysis of structural branching measures. Journal of Mathematical Chemistry 52(3), 805–819 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kirby, E.C.: Sensitivity of topological indexes to methyl group branching in octanes and azulenes, or what does a topological index index? Journal of Chemical Information and Computer Sciences 34(5), 1030–1035 (1994)Google Scholar
  23. 23.
    Bonchev, D., Trinajstić, N.: Information theory, distance matrix, and molecular branching. The Journal of Chemical Physics 67(10), 4517–4533 (1977)CrossRefGoogle Scholar
  24. 24.
    Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69(1), 17–20 (1947)CrossRefGoogle Scholar
  25. 25.
    Buxton, B.: A touching story: A personal perspective on the history of touch interfaces past and future. In: SID Symposium, vol. 41, pp. 444–448. Wiley (2010)Google Scholar
  26. 26.
    Cetin, G., Bedi, R.: Multi-touch Technologies. NUIgroup.com (2009)Google Scholar
  27. 27.
    Alden, D.G., Daniels, R.W., Kanarick, A.F.: Keyboard design and operation: A review of the major issues. Human Factors: The Journal of the Human Factors and Ergonomics Society 14(4), 275–293 (1972)Google Scholar
  28. 28.
    Mehta, N., Smith, K., Holmes, F.: Feature extraction as a tool for computer input. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 1982), vol. 7, pp. 818–820. IEEE (1982)Google Scholar
  29. 29.
    Holzinger, A., Searle, G., Peischl, B., Debevc, M.: An answer to “Who needs a stylus?” on handwriting recognition on mobile devices. In: Obaidat, M.S., Sevillano, J.L., Filipe, J. (eds.) ICETE 2011. CCIS, vol. 314, pp. 156–167. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Moscovich, T.: Multi-touch interaction. In: Conference on Human Factors in Computing Systems: CHI 2006 Extended Abstracts on Human Factors in Computing Systems, vol. 22, pp. 1775–1778 (2006)Google Scholar
  31. 31.
    Wang, F., Ren, X.S.: Empirical evaluation for finger input properties in multi-touch interaction. In: Greenberg, S., Hudson, S.E., Hinkley, K., RingelMorris, M., Olsen, D.R. (eds.) Proceedings of the 27th Annual Chi Conference on Human Factors in Computing Systems, pp. 1063–1072. Assoc Computing Machinery (2009)Google Scholar
  32. 32.
    Park, W., Han, S.H.: Intuitive multi-touch gestures for mobile web browsers. Interacting With Computers 25(5), 335–350 (2013)CrossRefGoogle Scholar
  33. 33.
    Holzinger, A., Höller, M., Schedlbauer, M., Urlesberger, B.: An investigation of finger versus stylus input in medical scenarios. In: Luzar-Stiffler, V., Dobric, V.H., Bekic, Z. (eds.) ITI 2008: 30th International Conference on Information Technology Interfaces, pp. 433–438. IEEE (2008)Google Scholar
  34. 34.
    Crisan, S., Tarnovan, I.G., Tebrean, B., Crisan, T.E.: Optical multi-touch system for patient monitoring and medical data analysis. In: Vlad, S., Ciupa, R., Nicu, A.I. (eds.) MEDITECH 2009. IFMBE Proceedings, vol. 26, pp. 279–282. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  35. 35.
    Lundstrom, C., Rydell, T., Forsell, C., Persson, A., Ynnerman, A.: Multi-touch table system for medical visualization: Application to orthopedic surgery planning. IEEE Transactions on Visualization and Computer Graphics 17(12), 1775–1784 (2011)CrossRefGoogle Scholar
  36. 36.
    Crisan, S., Tarnovan, I.G.: Optimization of a multi-touch sensing device for biomedical applications. In: Vlaicu, A., Brad, S. (eds.) Interdisciplinary Research in Engineering: Steps Towards Breakthrough Innovation for Sustainable Development. Advanced Engineering Forum, vol. 8-9, pp. 545–552. Trans Tech Publications Ltd, Stafa-Zurich (2013)Google Scholar
  37. 37.
    Xie, Q.Q., Liang, G.Y., Tang, C., Wu, X.Y.: A fast and robust fingertips tracking algorithm for vision-based multi-touch interaction. In: 10th IEEE International Conference on Control and Automation (ICCA), pp. 1346–1351 (2013)Google Scholar
  38. 38.
    Chen, T.T.H., Fels, S., Min, S.S.: Flowfield and beyond: applying pressure-sensitive multi-point touchpad interaction. In: Proceedings of 2003 International Conference on Multimedia and Expo., ICME 2003, vol. 1, pp. 49–52 (July 2003)Google Scholar
  39. 39.
    Hodges, S., Izadi, S., Butler, A., Rrustemi, A., Buxton, B.: Thinsight: Versatile multi-touch sensing for thin form-factor displays. In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, UIST 2007, pp. 259–268. ACM (2007)Google Scholar
  40. 40.
    Baudel, T., Beaudouinlafon, M.: Charade - remote control of objects using free-hand gestures. Communications of the ACM 36(7), 28–35 (1993)CrossRefGoogle Scholar
  41. 41.
    Long Jr., A.C., Landay, J.A., Rowe, L.A.: Implications for a gesture design tool. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 40–47. ACM (1999)Google Scholar
  42. 42.
    Alvarado, C., Davis, R.: Sketchread: A multi-domain sketch recognition engine. In: Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology, pp. 23–32. ACM (2004)Google Scholar
  43. 43.
    Paulson, B., Hammond, T.: Paleosketch: Accurate primitive sketch recognition and beautification. In: Proceedings of the 13th International Conference on Intelligent user Interfaces, pp. 1–10. ACM (2008)Google Scholar
  44. 44.
    Fernández-Pacheco, D., Albert, F., Aleixos, N., Conesa, J.: A new paradigm based on agents applied to free-hand sketch recognition. Expert Systems with Applications 39(8), 7181–7195 (2012)CrossRefGoogle Scholar
  45. 45.
    Wu, M., Shen, C., Ryall, K., Forlines, C., Balakrishnan, R.: Gesture registration, relaxation, and reuse for multi-point direct-touch surfaces. In: First IEEE International Workshop on Horizontal Interactive Human-Computer Systems, TableTop 2006. IEEE (2006)Google Scholar
  46. 46.
    Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: Greenberg, S., Hudson, S.E., Hinkley, K., RingelMorris, M., Olsen, D.R. (eds.) CHI2009: Proceedings of the 27th Annual Conference on Human Factors in Computing Systems, pp. 1083–1092. Assoc Computing Machinery (2009)Google Scholar
  47. 47.
    Park, W., Han, S.H.: An analytical approach to creating multitouch gesture vocabularies in mobile devices: A case study for mobile web browsing gestures. International Journal of Human-Computer Interaction 30(2), 126–141Google Scholar
  48. 48.
    Kammer, D., Wojdziak, J., Keck, M., Groh, R., Taranko, S.: Towards a formalization of multi-touch gestures. In: ACM International Conference on Interactive Tabletops and Surfaces, ITS 2010, pp. 49–58. ACM (2010)Google Scholar
  49. 49.
    Hoggan, E., Williamson, J., Oulasvirta, A., Nacenta, M., Kristensson, P.O., Lehtiö, A.: Multi-touch rotation gestures: Performance and ergonomics. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 3047–3050. ACM, New York (2013)Google Scholar
  50. 50.
    Schmidt, S., Nacenta, M., Dachselt, R., Carpendale, S.: A set of multi-touch graph interaction techniques. In: ACM International Conference on Interactive Tabletops and Surfaces, pp. 113–116. ACM (2010)Google Scholar
  51. 51.
    Wong, N., Carpendale, S., Greenberg, S.: Edgelens: An interactive method for managing edge congestion in graphs. In: IEEE Symposium on Information Visualization, INFOVIS 2003, pp. 51–58. IEEE (October 2003)Google Scholar
  52. 52.
    Purchase, H.C., Carrington, D., Allder, J.: Evaluating graph drawing aesthetics: Defining and exploring a new empirical research area. Computer Graphics and Multimedia, 145–178 (2004)Google Scholar
  53. 53.
    Cockburn, A., Karlson, A., Bederson, B.B.: A review of overview plus detail, zooming, and focus plus context interfaces. ACM Computing Surveys, 41–1 (2008)Google Scholar
  54. 54.
    Isenberg, P., Carpendale, S., Bezerianos, A., Henry, N., Fekete, J.D.: Coconuttrix: Collaborative retrofitting for information visualization. IEEE Computer Graphics and Applications 29(5), 44–57 (2009)CrossRefGoogle Scholar
  55. 55.
    Herman, I., Melanon, G., Marshall, M.: Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics 6(1), 24–43 (2000)CrossRefGoogle Scholar
  56. 56.
    Tollis, I., Eades, P., Di Battista, G., Tollis, L.: Graph drawing: Algorithms for the visualization of graphs, vol. 1. Prentice-Hall, New York (1998)MATHGoogle Scholar
  57. 57.
    Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  58. 58.
    Bederson, B.B., Hollan, J.D.: Pad++: A zooming graphical interface for exploring alternate interface physics. In: Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology, pp. 17–26. ACM (1994)Google Scholar
  59. 59.
    Sarkar, M., Brown, M.H.: Graphical fisheye views of graphs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 83–91. ACM (1992)Google Scholar
  60. 60.
    Purchase, H.C.: Metrics for graph drawing aesthetics. Journal of Visual Languages & Computing 13(5), 501–516 (2002)CrossRefGoogle Scholar
  61. 61.
    Wong, N., Carpendale, S.: Supporting interactive graph exploration with edge plucking. In: Proceedings of SPIE, vol. 6495, pp. 235–246 (2007)Google Scholar
  62. 62.
    Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions on Visualization and Computer Graphics 12(5), 741–748 (2006)CrossRefGoogle Scholar
  63. 63.
    Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., Fekete, J.: Topology-aware navigation in large networks. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems, pp. 2319–2328. ACM (2009)Google Scholar
  64. 64.
    Müller, R.: Medikamente und Richtwerte in der Notfallmedizin, 11th edn. Ralf Müller Verlag, Graz (2012)Google Scholar
  65. 65.
    Soss, M.A.: On the size of the euclidean sphere of influence graph. In: Proceedings Eleventh Canadian Conference on Computational Geometry, pp. 43–46 (1999)Google Scholar
  66. 66.
    Guibas, L., Pach, J., Sharir, M.: Sphere-of-influence graphs in higher dimensions. Intuitive Geometry 63, 131–137 (1994)MathSciNetMATHGoogle Scholar
  67. 67.
    Dwyer, R.A.: The expected size of the sphere-of-influence graph. Computational Geometry 5(3), 155–164 (1995)MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Dehmer, M.: Information theory of networks. Symmetry 3, 767–779 (2012)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Mowshowitz, A.: Entropy and the complexity of the graphs I: An index of the relative complexity of a graph. Bull. Math. Biophys. 30, 175–204 (1968)MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Holzinger, A., Ofner, B., Stocker, C., Calero Valdez, A., Schaar, A.K., Ziefle, M., Dehmer, M.: On graph entropy measures for knowledge discovery from publication network data. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 354–362. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  71. 71.
    Dehmer, M., Grabner, M., Varmuza, K.: Information indices with high discriminative power for graphs. PLoS ONE 7, e31214 (2012)Google Scholar
  72. 72.
    Dehmer, M., Grabner, M., Mowshowitz, A., Emmert-Streib, F.: An efficient heuristic approach to detecting graph isomorphism based on combinations of highly discriminating invariants. Advances in Computational Mathematics (2012)Google Scholar
  73. 73.
    Ma, K.L., Muelder, C.W.: Large-scale graph visualization and analytics. Computer 46(7), 39–46 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andreas Holzinger
    • 1
  • Bernhard Ofner
    • 1
  • Matthias Dehmer
    • 2
  1. 1.Research Unit Human-Computer Interaction, Institute for Medical Informatics, Statistics & DocumentationMedical University GrazGrazAustria
  2. 2.Department of Computer ScienceUniversität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations