Advertisement

Facility Location in Evolving Metrics

  • David Eisenstat
  • Claire Mathieu
  • Nicolas Schabanel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8573)

Abstract

Understanding the dynamics of evolving social or infrastructure networks is a challenge in applied areas such as epidemiology, viral marketing, and urban planning. During the past decade, data has been collected on such networks but has yet to be analyzed fully. We propose to use information on the dynamics of the data to find stable partitions of the network into groups. For that purpose, we introduce a time-dependent, dynamic version of the facility location problem, which includes a switching cost when a client’s assignment changes from one facility to another. This might provide a better representation of an evolving network, emphasizing the abrupt change of relationships between subjects rather than the continuous evolution of the underlying network. We show for some realistic examples that this model yields better hypotheses than its counterpart without switching costs, where each snapshot can be optimized independently. For our model, we present an O(lognT)-approximation algorithm and a matching hardness result, where n is the number of clients and T is the number of timesteps. We also give another algorithm with approximation ratio O(lognT) for a variant model where the decision to open a facility is made independently at each timestep.

Keywords

Switching Cost Facility Location Competitive Ratio Facility Location Problem Open Facility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anagnostopoulos, A., Bent, R., Upfal, E., Van Hentenryck, P.: A simple and deterministic competitive algorithm for online facility location. Information and Computation 194, 175–202 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM J. on Computing 33(3), 544–562 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Byrka, J., Aardal, K.: An optimal bifactor approximation algorithm for the metric uncapacitated facility location problem. SIAM J. on Computing 39(6), 2212–2231 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. In: STOC, pp. 626–635 (1997)Google Scholar
  5. 5.
    Charikar, M., Guha, S.: Improved combinatorial algorithms for facility location problems. SIAM J. on Computing 34(4), 803–824 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Charikar, M., Panigrahy, R.: Clustering to minimize the sum of cluster diameters. In: STOC, pp. 1–10 (2001)Google Scholar
  7. 7.
    Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: STOC 2014, arXiv:1305.1979 (2014)Google Scholar
  8. 8.
    Divéki, G., Imreh, C.: Online facility location with facility movements. Central European J. of Operations Research 19(2), 191–200 (2010)Google Scholar
  9. 9.
    Fernandes, C.G., Oshiro, M.I., Schabanel, N.: Dynamic clustering of evolving networks: some results on the line. In: AlgoTel, 4 p. (2013), hal-00818985Google Scholar
  10. 10.
    Fotakis, D.: Incremental algorithms for facility location and k-median. Theoretical Computer Science 361(2-3), 275–313 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fotakis, D.: On the competitive ratio for online facility location. Algorithmica 50(1), 1–57 (2008)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Fotakis, D.: Online and incremental algorithms for facility location. SIGACT News 42(1), 97–131 (2011)CrossRefGoogle Scholar
  13. 13.
    Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing lp. J. ACM 50(6), 795–824 (2003)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kleinberg, J.M.: The small-world phenomenon and decentralized search. SIAM News 37(3) (2004)Google Scholar
  15. 15.
    Li, S.: A 1.488 approximation algorithm for the uncapacitated facility location problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 77–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric facility location problems. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 229–242. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Meyerson, A.: Online facility location. In: FOCS, vol. 42, pp. 426–431 (2001)Google Scholar
  18. 18.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Physical Review Letters 86, 3200–3203 (2001)CrossRefGoogle Scholar
  20. 20.
    Shmoys, D.B., Tardos, E., Aardal, K.I.: Approximation algorithms for facility location problems. In: STOC, vol. 29, pp. 265–274 (1997)Google Scholar
  21. 21.
    Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Van den Broeck, W., Régis, C., Lina, B., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6(8), 23176 (2011)CrossRefGoogle Scholar
  22. 22.
    Tantipathananandh, C., Berger-Wolf, T.Y., Kempe, D.: A framework for community identification in dynamic social networks. In: KDD, pp. 717–726 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • David Eisenstat
    • 1
  • Claire Mathieu
    • 2
  • Nicolas Schabanel
    • 3
    • 4
  1. 1.Brown UniversityUSA
  2. 2.CNRS, École normale supérieure UMR 8548France
  3. 3.CNRS, Université Paris DiderotFrance
  4. 4.IXXI, École normale supérieure de LyonFrance

Personalised recommendations