Advertisement

On the Positivity Problem for Simple Linear Recurrence Sequences,

  • Joël Ouaknine
  • James Worrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8573)

Abstract

Given a linear recurrence sequence (LRS) over the integers, the Positivity Problem asks whether all terms of the sequence are positive. We show that, for simple LRS (those whose characteristic polynomial has no repeated roots) of order 9 or less, Positivity is decidable, with complexity in the Counting Hierarchy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the complexity of numerical analysis. SIAM J. Comput. 38(5) (2009)Google Scholar
  2. 2.
    Amoroso, F., Viada, E.: Small points on subvarieties of a torus. Duke Mathematical Journal 150(3) (2009)Google Scholar
  3. 3.
    Amoroso, F., Viada, E.: On the zeros of linear recurrence sequences. Acta Arithmetica 147(4) (2011)Google Scholar
  4. 4.
    Bell, J.P., Gerhold, S.: On the positivity set of a linear recurrence. Israel Jour. Math. 57 (2007)Google Scholar
  5. 5.
    Berstel, J., Mignotte, M.: Deux propriétés décidables des suites récurrentes linéaires. Bull. Soc. Math. France 104 (1976)Google Scholar
  6. 6.
    Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer (1998)Google Scholar
  7. 7.
    Braverman, M.: Termination of integer linear programs. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Burke, J.R., Webb, W.A.: Asymptotic behavior of linear recurrences. Fib. Quart. 19(4) (1981)Google Scholar
  9. 9.
    Everest, G., van der Poorten, A., Shparlinski, I., Ward, T.: Recurrence Sequences. American Mathematical Society (2003)Google Scholar
  10. 10.
    Evertse, J.H., Schlickewei, H.P., Schmidt, W.M.: Linear equations in variables which lie in a multiplicative group. Ann. Math. 155(3) (2002)Google Scholar
  11. 11.
    Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations. Oxford Mathematical Monographs. Oxford University Press (1991)Google Scholar
  12. 12.
    Halava, V., Harju, T., Hirvensalo, M.: Positivity of second order linear recurrent sequences. Discrete Appl. Math. 154(3) (2006)Google Scholar
  13. 13.
    Halava, V., Harju, T., Hirvensalo, M., Karhumäki, J.: Skolem’s problem — on the border between decidability and undecidability. Technical Report 683, Turku Centre for Computer Science (2005)Google Scholar
  14. 14.
    Laohakosol, V.: Personal communication (July 2013)Google Scholar
  15. 15.
    Laohakosol, V., Tangsupphathawat, P.: Positivity of third order linear recurrence sequences. Discrete Appl. Math. 157(15) (2009)Google Scholar
  16. 16.
    Lipton, R.J.: Mathematical embarrassments. Blog entry (December 2009), http://rjlipton.wordpress.com/2009/12/26/mathematical-embarrassments/
  17. 17.
    Liu, L.L.: Positivity of three-term recurrence sequences. Electr. J. Comb. 17(1) (2010)Google Scholar
  18. 18.
    Mignotte, M., Shorey, T.N., Tijdeman, R.: The distance between terms of an algebraic recurrence sequence. Journal für die reine und angewandte Mathematik 349 (1984)Google Scholar
  19. 19.
    Nagasaka, K., Shiue, J.-S.: Asymptotic positiveness of linear recurrence sequences. Fib. Quart. 28(4) (1990)Google Scholar
  20. 20.
    Ouaknine, J., Worrell, J.: Decision problems for linear recurrence sequences. In: Finkel, A., Leroux, J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 21–28. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Ouaknine, J., Worrell, J.: On the Positivity Problem for simple linear recurrence sequences (full version). arXiv:1309.1550 (2013)Google Scholar
  22. 22.
    Ouaknine, J., Worrell, J.: Positivity problems for low-order linear recurrence sequences. In: Proc. Symp. on Discrete Algorithms (SODA). ACM-SIAM (2014)Google Scholar
  23. 23.
    Ouaknine, J., Worrell, J.: Ultimate Positivity is decidable for simple linear recurrence sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 330–341. Springer, Heidelberg (2014); Full version as arXiv:1309.1914Google Scholar
  24. 24.
    Rozenberg, G., Salomaa, A.: Cornerstones of Undecidability. Prentice Hall (1994)Google Scholar
  25. 25.
    Salomaa, A.: Growth functions of Lindenmayer systems: Some new approaches. In: Lindenmayer, A., Rozenberg, G. (eds.) Automata, Languages, Development. North-Holland (1976)Google Scholar
  26. 26.
    Soittola, M.: On D0L synthesis problem. In: Lindenmayer, A., Rozenberg, G. (eds.) Automata, Languages, Development. North-Holland (1976)Google Scholar
  27. 27.
    Tangsupphathawat, P., Punnim, N., Laohakosol, V.: The positivity problem for fourth order linear recurrence sequences is decidable. Colloq. Math. 128(1) (2012)Google Scholar
  28. 28.
    Tao, T.: Structure and Randomness. American Mathematical Society (2008)Google Scholar
  29. 29.
    Tarasov, S., Vyalyi, M.: Orbits of linear maps and regular languages. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 305–316. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Vereshchagin, N.K.: The problem of appearance of a zero in a linear recurrence sequence. Mat. Zametki 38(2) (1985) (in Russian)Google Scholar
  31. 31.
    Yokoyama, K., Li, Z., Nemes, I.: Finding roots of unity among quotients of the roots of an integral polynomial. In: Proc. Intern. Symp. on Symb. and Algebraic Comp. (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Joël Ouaknine
    • 1
  • James Worrell
    • 1
  1. 1.Department of Computer ScienceOxford UniversityUK

Personalised recommendations