Advertisement

Abstract

Contexts are terms with one ‘hole’, i.e. a place in which we can substitute an argument. In context unification we are given an equation over terms with variables representing contexts and ask about the satisfiability of this equation. Context unification at the same time is subsumed by a second-order unification, which is undecidable, and subsumes satisfiability of word equations, which is in PSPACE. We show that context unification is in PSPACE, so as word equations. For both problems NP is still the best known lower-bound.

This result is obtained by an extension of the recompression technique, recently developed by the author and used in particular to obtain a new PSPACE algorithm for satisfiability of word equations, to context unification. The recompression is based on applying simple compression rules (replacing pairs of neighbouring function symbols), which are (conceptually) applied on the solution of the context equation and modifying the equation in a way so that such compression steps can be performed directly on the equation, without the knowledge of the actual solution.

Keywords

Context unification Second order unification Term rewriting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Comon, H.: Completion of rewrite systems with membership constraints. Part I: Deduction rules. J. Symb. Comput. 25(4), 397–419 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Comon, H.: Completion of rewrite systems with membership constraints. Part II: Constraint solving. J. Symb. Comput. 25(4), 421–453 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Gascón, A., Godoy, G., Schmidt-Schauß, M., Tiwari, A.: Context unification with one context variable. J. Symb. Comput. 45(2), 173–193 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Jeż, A.: Recompression: a simple and powerful technique for word equations. In: Portier, N., Wilke, T. (eds.) STACS. LIPIcs, vol. 20, pp. 233–244. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl (2013)Google Scholar
  5. 5.
    Levy, J.: Linear second-order unification. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 332–346. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Levy, J., Schmidt-Schauß, M., Villaret, M.: On the complexity of bounded second-order unification and stratified context unification. Logic Journal of the IGPL 19(6), 763–789 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Levy, J., Villaret, M.: Currying second-order unification problems. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 326–339. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J. ACM 51(3), 483–496 (2004)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Plandowski, W., Rytter, W.: Application of lempel-ziv encodings to the solution of word equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 731–742. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Schmidt-Schauß, M.: Unification of stratified second-order terms, internal Report 12/94, Johann-Wolfgang-Goethe-Universität (1994)Google Scholar
  11. 11.
    Schmidt-Schauß, M.: A decision algorithm for stratified context unification. J. Log. Comput. 12(6), 929–953 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Schmidt-Schauß, M., Schulz, K.U.: On the exponent of periodicity of minimal solutions of context equations. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 61–75. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Schmidt-Schauß, M., Schulz, K.U.: Solvability of context equations with two context variables is decidable. J. Symb. Comput. 33(1), 77–122 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Schmidt-Schauß, M., Schulz, K.U.: Decidability of bounded higher-order unification. J. Symb. Comput. 40(2), 905–954 (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Artur Jeż
    • 1
    • 2
  1. 1.Max Planck Institute für InformatikSaarbrückenGermany
  2. 2.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations