Handling Infinitely Branching WSTS

  • Michael Blondin
  • Alain Finkel
  • Pierre McKenzie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8573)


Most decidability results concerning well-structured transition systems apply to the finitely branching variant. Yet some models (inserting automata, ω-Petri nets, ...) are naturally infinitely branching. Here we develop tools to handle infinitely branching WSTS by exploiting the crucial property that in the (ideal) completion of a well-quasi-ordered set, downward-closed sets are finite unions of ideals. Then, using these tools, we derive decidability results and we delineate the undecidability frontier in the case of the termination, the control-state maintainability and the coverability problems. Coverability and boundedness under new effectivity conditions are shown decidable.


Coverability Problem Decidability Result Forward Algorithm Broadcast Protocol Graph Transformation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-state systems. In: LICS, pp. 313–321 (1996)Google Scholar
  2. 2.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of programs with well quasi-ordered domains. Inf. Comput. 160(1-2), 109–127 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Comp. Sci., vol. 3, pp. 1–168. Oxford University Press (1994)Google Scholar
  4. 4.
    Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decidability status of reachability and coverability in graph transformation systems. In: RTA, pp. 101–116 (2012)Google Scholar
  5. 5.
    Bertrand, N., Schnoebelen, P.: Computable fixpoints in well-structured symbolic model checking. Formal Methods in System Design 43(2), 233–267 (2013)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bouyer, P., Markey, N., Ouaknine, J., Schnoebelen, P., Worrell, J.: On termination and invariance for faulty channel systems. FAC 24(4-6), 595–607 (2012)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Cécé, G., Finkel, A., Iyer, S.P.: Unreliable channels are easier to verify than perfect channels. Inf. Comput. 124(1), 20–31 (1996)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Dufourd, C., Jančar, P., Schnoebelen, P.: Boundedness of reset P/T nets. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 301–310. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS, pp. 352–359 (1999)Google Scholar
  11. 11.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoret. Comput. Sci. 256(1–2), 63–92 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Finkel, A.: Reduction and covering of infinite reachability trees. Information and Computation 89(2), 144–179 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I: Completions. In: STACS, pp. 433–444 (2009)Google Scholar
  14. 14.
    Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, Part II: Complete WSTS. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 188–199. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing Petri net extensions. Information and Computation 195(1-2), 1–29 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Ganty, P., Raskin, J.-F., Van Begin, L.: A complete abstract interpretation framework for coverability properties of WSTS. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 49–64. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Geeraerts, G., Heußner, A., Praveen, M., Raskin, J.F.: ω-Petri nets. In: Petri Nets, pp. 49–69 (2013)Google Scholar
  18. 18.
    Geeraerts, G., Raskin, J.F., Begin, L.V.: Expand, enlarge and check: New algorithms for the coverability problem of WSTS. JCSS 72(1), 180–203 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Goubault-Larrecq, J., Schnoebelen, P.: Personal communication (October 2013)Google Scholar
  20. 20.
    Jancar, P.: A note on well quasi-orderings for powersets. Inf. Process. Lett. 72(5-6), 155–160 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Kaiser, A., Kroening, D., Wahl, T.: Efficient coverability analysis by proof minimization. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 500–515. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    König, B., Stückrath, J.: Well-structured graph transformation systems with negative application conditions. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 81–95. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Pachl, J.K.: Reachability problems for communicating finite state machines. Technical Report CS-82-12, University of Waterloo (1982)Google Scholar
  24. 24.
    Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with Higman’s lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 441–452. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Schmitz, S., Schnoebelen, P.: The power of well-structured systems. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 5–24. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Wies, T., Zufferey, D., Henzinger, T.A.: Forward analysis of depth-bounded processes. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 94–108. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Zufferey, D., Wies, T., Henzinger, T.A.: Ideal abstractions for well-structured transition systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 445–460. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michael Blondin
    • 1
    • 2
  • Alain Finkel
    • 2
  • Pierre McKenzie
    • 1
    • 2
  1. 1.Université de MontréalCanada
  2. 2.ENS CachanFrance

Personalised recommendations