Coalgebraic Weak Bisimulation from Recursive Equations over Monads

  • Sergey Goncharov
  • Dirk Pattinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8573)

Abstract

Strong bisimulation for labelled transition systems is one of the most fundamental equivalences in process algebra, and has been generalised to numerous classes of systems that exhibit richer transition behaviour. Nearly all of the ensuing notions are instances of the more general notion of coalgebraic bisimulation. Weak bisimulation, however, has so far been much less amenable to a coalgebraic treatment. Here we attempt to close this gap by giving a coalgebraic treatment of (parametrized) weak equivalences, including weak bisimulation. Our analysis requires that the functor defining the transition type of the system is based on a suitable order-enriched monad, which allows us to capture weak equivalences by least fixpoints of recursive equations. Our notion is in agreement with existing notions of weak bisimulations for labelled transition systems, probabilistic and weighted systems, and simple Segala systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L., Ingolfsdottir, A., Sack, J.: Resource bisimilarity and graded bisimilarity coincide. Information Processing Letters 111(2), 68–76 (2010)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Bartels, F., Sokolova, A., de Vink, E.: A hierarchy of probabilistic system types. In: Coalgebraic Methods in Computer Science. ENTCS, vol. 82. Elsevier (2003)Google Scholar
  4. 4.
    Brengos, T.: Weak bisimulation for coalgebras over order enriched monads (2013), http://arxiv.org/abs/1310.3656
  5. 5.
    Corradini, F., De Nicola, R., Labella, A.: Graded modalities and resource bisimulation. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 381–393. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    de Vink, E., Rutten, J.: Bisimulation for probabilistic transition systems: a coalgebraic approach. Theoretical Computer Science 221(1-2), 271–293 (1999)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Droste, M., Kuich, W.: Semirings and formal power series. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. Monographs in Theoretical Computer Science, pp. 3–28. Springer (2009)Google Scholar
  8. 8.
    Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical Methods in Comp. Sci. (2007)Google Scholar
  9. 9.
    Jacobs, B.: Coalgebraic trace semantics for combined possibilitistic and probabilistic systems. Electr. Notes Theor. Comput. Sci. 203(5), 131–152 (2008)CrossRefGoogle Scholar
  10. 10.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Latella, D., Massink, M., de Vink, E.P.: Bisimulation of labeled state-to-function transition systems of stochastic process languages. In: Golas, U., Soboll, T. (eds.) Proc. ACCAT 2012. EPTCS, vol. 93, pp. 23–43 (2012)Google Scholar
  12. 12.
    Miculan, M., Peressotti, M.: Weak bisimulations for labelled transition systems weighted over semirings (2013), http://arxiv.org/abs/1310.4106
  13. 13.
    Milner, R.: Communication and concurrency. Prentice-Hall (1989)Google Scholar
  14. 14.
    Moggi, E.: A modular approach to denotational semantics. In: Curien, P.-L., Pitt, D.H., Pitts, A.M., Poigné, A., Rydeheard, D.E., Abramsky, S. (eds.) CTCS 1991. LNCS, vol. 530, pp. 138–139. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  15. 15.
    Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Rutten, J.: Universal Coalgebra: A theory of systems. Theoret. Comput. Sci. 249(1), 3–80 (2000)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Segala, R.: Modelling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Massachusetts Institute of Technology (1995)Google Scholar
  18. 18.
    Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  19. 19.
    Sokolova, A., de Vink, E.P., Woracek, H.: Coalgebraic weak bisimulation for action-type systems. Sci. Ann. Comp. Sci. 19, 93–144 (2009)Google Scholar
  20. 20.
    Staton, S.: Relating coalgebraic notions of bisimulation. Logical Methods in Computer Science 7(1) (2011)Google Scholar
  21. 21.
    van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43(3), 555–600 (1996)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Varacca, D., Winskel, G.: Distributing probability over non-determinism. Math. Struct. Comput. Sci. 16, 87–113 (2006)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Winskel, G.: The Formal Semantics of Programming Languages. MIT Press, Cambridge (1993)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sergey Goncharov
    • 1
  • Dirk Pattinson
    • 2
  1. 1.Department of Computer ScienceFAU Erlangen-NürnbergGermany
  2. 2.Research School of Computer ScienceAustralian National UniversityAustralia

Personalised recommendations