Toward a Structure Theory of Regular Infinitary Trace Languages

  • Namit Chaturvedi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8573)


The family of regular languages of infinite words is structured into a hierarchy where each level is characterized by a class of deterministic ω-automata – the class of deterministic Büchi automata being the most prominent among them. In this paper, we analyze the situation of regular languages of infinite Mazurkiewicz traces that model non-terminating, concurrent behaviors of distributed systems. Here, a corresponding classification is still missing. We introduce the model of “synchronization-aware asynchronous automata”, which allows us to initiate a classification of regular infinitary trace languages in a form that is in nice correspondence to the case of ω-regular word languages.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chaturvedi, N.: Languages of infinite traces and deterministic asynchronous automata. Technical Report AIB-2014-04, RWTH Aachen University (2014)Google Scholar
  2. 2.
    Chaturvedi, N., Gelderie, M.: Weak ω-Regular Trace Languages., CoRR abs/1402.3199 (2014)Google Scholar
  3. 3.
    Diekert, V., Muscholl, A.: Deterministic asynchronous automata for infinite traces. Acta Informatica 31(4), 379–397 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific Publishing Co., Inc., River Edge (1995)Google Scholar
  5. 5.
    Gastin, P., Petit, A.: Asynchronous cellular automata for infinite traces. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 583–594. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  6. 6.
    Madhavan, M.: Automata on distributed alphabets. In: D’Souza, D., Shankar, P. (eds.) Modern Applications of Automata Theory. IISc Research Monographs Series, vol. 2, pp. 257–288. World Scientific (May 2012)Google Scholar
  7. 7.
    Muscholl, A.: Über die Erkennbarkeit unendlicher Spuren. PhD thesis (1994)Google Scholar
  8. 8.
    Perrin, D., Pin, J.-É.: Automata and Infinite Words. In: Infinite Words: Automata, Semigroups, Logic and Games. Pure and Applied Mathematics, vol. 141. Elsevier (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Namit Chaturvedi
    • 1
  1. 1.Lehrstuhl für Informatik 7RWTH Aachen UniversityAachenGermany

Personalised recommendations