Advertisement

Games with a Weak Adversary

  • Krishnendu Chatterjee
  • Laurent Doyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8573)

Abstract

We consider multi-player graph games with partial-observation and parity objective. While the decision problem for three-player games with a coalition of the first and second players against the third player is undecidable in general, we present a decidability result for partial-observation games where the first and third player are in a coalition against the second player, thus where the second player is adversarial but weaker due to partial-observation. We establish tight complexity bounds in the case where player 1 is less informed than player 2, namely 2-EXPTIME-completeness for parity objectives. The symmetric case of player 1 more informed than player 2 is much more complicated, and we show that already in the case where player 1 has perfect observation, memory of size non-elementary is necessary in general for reachability objectives, and the problem is decidable for safety and reachability objectives. From our results we derive new complexity results for partial-observation stochastic games.

Keywords

Turing Machine Stochastic Game Partial Observation Parity Objective Tape Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ArXiv (2014), Full version http://arxiv.org/abs/1404.5453
  2. 2.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49, 672–713 (2002)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic Büchi automata. In: Amadio, R.M. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 287–301. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bertrand, N., Genest, B., Gimbert, H.: Qualitative determinacy and decidability of stochastic games with signals. In: Proc. of LICS, pp. 319–328 (2009)Google Scholar
  5. 5.
    Chatterjee, K.: Stochastic ω-Regular Games. PhD thesis, UC Berkeley (2007)Google Scholar
  6. 6.
    Chatterjee, K., Doyen, L.: The complexity of partial-observation parity games. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Chatterjee, K., Doyen, L.: Partial-observation stochastic games: How to win when belief fails. In: Proc. of LICS 2012; Journal version ACM ToCL, pp. 175–184. IEEE (2012)Google Scholar
  8. 8.
    Chatterjee, K., Doyen, L., Gimbert, H., Henzinger, T.A.: Randomness for free. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 246–257. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games of incomplete information. Logical Methods in Computer Science 3(3:4) (2007)Google Scholar
  10. 10.
    Chatterjee, K., Doyen, L., Nain, S., Vardi, M.Y.: The complexity of partial-observation stochastic parity games with finite-memory strategies. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 242–257. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Simple stochastic parity games. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100–113. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    De Wulf, M., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imperfect information. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 153–168. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Finkbeiner, B., Schewe, S.: Coordination logic. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 305–319. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. Theor. Comp. Science 221, 369–392 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kechris, A.: Classical Descriptive Set Theory. Springer (1995)Google Scholar
  16. 16.
    Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local specifications. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 396–407. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Mohalik, S., Walukiewicz, I.: Distributed games. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 338–351. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)Google Scholar
  20. 20.
    Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: FOCS, pp. 348–363 (1979)Google Scholar
  21. 21.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. of POPL, pp. 179–190. ACM Press (1989)Google Scholar
  22. 22.
    Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event processes. SIAM Journal of Control and Optimization 25(1), 206–230 (1987)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Ramanujam, R., Simon, S.: A communication based model for games of imperfect information. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 509–523. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Reif, J.H.: Universal games of incomplete information. In: Proc. of STOC, pp. 288–308 (1979)Google Scholar
  25. 25.
    Reif, J.H.: The complexity of two-player games of incomplete information. JCSS 29, 274–301 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Reif, J.H., Peterson, G.L.: A dynamic logic of multiprocessing with incomplete information. In: Proc. of POPL, pp. 193–202. ACM (1980)Google Scholar
  27. 27.
    Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages. Beyond Words, vol. 3, ch. 7, pp. 389–455. Springer (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Laurent Doyen
    • 2
  1. 1.ISTAustria
  2. 2.LSV, ENS Cachan & CNRSFrance

Personalised recommendations