Advertisement

Deterministic Rectangle Enclosure and Offline Dominance Reporting on the RAM

  • Peyman Afshani
  • Timothy M. Chan
  • Konstantinos Tsakalidis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8572)

Abstract

We revisit a classical problem in computational geometry that has been studied since the 1980s: in the rectangle enclosure problem we want to report all k enclosing pairs of n input rectangles in 2D. We present the first deterministic algorithm that takes O(nlogn + k) worst-case time and O(n) space in the word-RAM model. This improves previous deterministic algorithms with O((nlogn + k)loglogn) running time. We achieve the result by derandomizing the algorithm of Chan, Larsen and Pătraşcu [SoCG’11] that attains the same time complexity but in expectation.

The 2D rectangle enclosure problem is related to the offline dominance range reporting problem in 4D, and our result leads to the currently fastest deterministic algorithm for offline dominance reporting in any constant dimension d ≥ 4.

A key tool behind Chan et al.’s previous randomized algorithm is shallow cuttings for 3D dominance ranges. Recently, Afshani and Tsakalidis [SODA’14] obtained a deterministic O(nlogn)-time algorithm to construct such cuttings. We first present an improved deterministic construction algorithm that runs in O(nloglogn) time in the word-RAM; this result is of independent interest. Many additional ideas are then incorporated, including a linear-time algorithm for merging shallow cuttings and an algorithm for an offline tree point location problem.

Keywords

Query Point Deterministic Algorithm Input Point Outer Corner Planar Separator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afshani, P.: On dominance reporting in 3D. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 41–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Afshani, P., Tsakalidis, K.: Optimal deterministic shallow cuttings for 3D dominance ranges. In: Proc. of the 25th An. SODA, pp. 1389–1398. ACM-SIAM (2014)Google Scholar
  3. 3.
    Bentley, J.L., Wood, D.: An optimal worst case algorithm for reporting intersections of rectangles. IEEE Trans. Computers 29(7), 571–577 (1980)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chan, T.M.: All-pairs shortest paths with real weights in O(n 3/log n) time. Algorithmica 50(2), 236–243 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chan, T.M.: Persistent predecessor search and orthogonal point location on the word RAM. ACM Transactions on Algorithms 9(3), 22 (2013)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM, revisited. In: Proc. of the 27th SoCG, pp. 1–10. ACM (2011)Google Scholar
  7. 7.
    Chan, T.M., Pătraşcu, M.: Transdichotomous results in computational geometry, I: Point location in sublogarithmic time. SIAM J. Comp. 39(2), 703–729 (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    Chan, T.M., Pătraşcu, M.: Counting inversions, offline orthogonal range counting, and related problems. In: Proc. of the 21st An. SODA, pp. 161–173. ACM-SIAM (2010)Google Scholar
  9. 9.
    Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique. Algorithmica 1(2), 133–162 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. J. Comp. Syst. Sci. 48(3), 533–551 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Goodrich, M.T.: Planar separators and parallel polygon triangulation. J. Comp. Syst. Sci. 51(3), 374–389 (1995)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Gupta, P., Janardan, R., Smid, M., DasGupta, B.: The rectangle enclosure and point-dominance problems revisited. I. J. C. Geom. & Appl. 7(5), 437–455 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Han, Y.: Deterministic sorting in O(nloglogn) time and linear space. J. Algorithms 50(1), 96–105 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Lagogiannis, G., Makris, C., Tsakalidis, A.K.: A new algorithm for rectangle enclosure reporting. Inf. Process. Lett. 72(5-6), 177–182 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Lee, D.T., Preparata, F.P.: An improved algorithm for the rectangle enclosure problem. J. Algorithms 3(3), 218–224 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comp. 9(3), 615–627 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Makris, C., Tsakalidis, K.: An improved algorithm for static 3D dominance reporting in the pointer machine. In: Chao, K.-M., Hsu, T.-s., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 568–577. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Matoušek, J.: Reporting points in halfspaces. Comp. Geom. 2, 169–186 (1992)CrossRefzbMATHGoogle Scholar
  19. 19.
    Preparata, F.P., Shamos, M.I.: Computational Geometry - An Introduction. Springer (1985)Google Scholar
  20. 20.
    Ramos, E.A.: On range reporting, ray shooting and k-level construction. In: Proc. of the 15th SoCG, pp. 390–399. ACM (1999)Google Scholar
  21. 21.
    Vaishnavi, V., Wood, D.: Data structures for the rectangle containment and enclosure problems. Comp. Graphics and Image Processing 13(4), 372–384 (1980)CrossRefGoogle Scholar
  22. 22.
    van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority queue. Mathematical Systems Theory 10(1), 99–127 (1976)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peyman Afshani
    • 1
  • Timothy M. Chan
    • 2
  • Konstantinos Tsakalidis
    • 3
  1. 1.MADALGO, Department of Computer ScienceAarhus UniversityDenmark
  2. 2.David R. Cheriton School of Computer ScienceUniversity of WaterlooCanada
  3. 3.Computer Science and Engineering DepartmentCUHKHong Kong

Personalised recommendations