Parameterized Algorithms to Preserve Connectivity

  • Manu Basavaraju
  • Fedor V. Fomin
  • Petr Golovach
  • Pranabendu Misra
  • M. S. Ramanujan
  • Saket Saurabh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8572)

Abstract

We study the following family of connectivity problems. For a given λ-edge connected (multi) graph G = (V,E), a set of links L such that G + L = (V, E ∪ L) is (λ + 1)-edge connected, and a positive integer k, the questions are

Augmentation Problem: whether G can be augmented to a (λ + 1)-edge connected graph by adding at most k links from L; or

Deletion Problem: whether it is possible to preserve (λ + 1)-edge connectivity of graph G + L after deleting at least k links from L.

We obtain the following results.
  • An 9k|V|O(1) time algorithm for a weighted version of the augmentation problem. This improves over the previous best bound of 2O(klogk)|V|O(1) given by Marx and Vegh [ICALP 2013]. Let us remark that even for λ = 1, the best known algorithm so far due to Nagamochi [DAM 2003] runs in time 2O(klogk)|V|O(1).

  • An 2O(k)|V|O(1) algorithm for the deletion problem thus establishing that the problem is fixed-parameter tractable (FPT). Moreover, we show that the problem admits a kernel with 12k vertices and 3k links when the graph G has odd-connectivity and a kernel with O(k2) vertices and O(k2) links when G has even-connectivity.

Our results are based on a novel connection between augmenting sets and the Steiner Tree problem in an appropriately defined auxiliary graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 196–207. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Dinits, E., Karzanov, A., Lomonosov, M.: On the structure of a family of minimal weighted cuts in graphs. In: Fridman, A. (ed.) Studies in Discrete Mathematics, Nauka, Moscow, pp. 290–306 (1976)Google Scholar
  3. 3.
    Dreyfus, S.E., Wagner, R.A.: The steiner problem in graphs. Networks 1(3), 195–207 (1971)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Eswaran, K., Tarjan, R.: Augmentation problems. SIAM Journal on Computing 5(4), 653–665 (1976)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM Journal on Discrete Mathematics 5(1), 25–53 (1992)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Frederickson, G.N., JáJá, J.: Approximation algorithms for several graph augmentation problems. SIAM J. Comput. 10(2), 270–283 (1981)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Guo, J., Uhlmann, J.: Kernelization and complexity results for connectivity augmentation problems. Networks 56(2), 131–142 (2010)MATHMathSciNetGoogle Scholar
  8. 8.
    Marx, D., Végh, L.A.: Fixed-parameter algorithms for minimum cost edge-connectivity augmentation. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 721–732. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Nagamochi, H.: An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree. Discrete Applied Mathematics 126(1), 83–113 (2003); 5th Annual International Computing and combinatorics ConferenceGoogle Scholar
  10. 10.
    Vegh, L.: Augmenting undirected node-connectivity by one. SIAM Journal on Discrete Mathematics 25(2), 695–718 (2011)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. Journal of Computer and System Sciences 35(1), 96–144 (1987)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Manu Basavaraju
    • 1
  • Fedor V. Fomin
    • 1
  • Petr Golovach
    • 1
  • Pranabendu Misra
    • 2
  • M. S. Ramanujan
    • 1
  • Saket Saurabh
    • 1
    • 2
  1. 1.University of BergenNorway
  2. 2.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations