Advertisement

Coordination Mechanisms for Selfish Routing over Time on a Tree

  • Sayan Bhattacharya
  • Janardhan Kulkarni
  • Vahab Mirrokni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8572)

Abstract

While selfish routing has been studied extensively, the problem of designing better coordination mechanisms for routing over time in general graphs has remained an open problem. In this paper, we focus on tree networks (single source multiple destinations) with the goal of minimizing (weighted) average sojourn time of jobs, and provide the first coordination mechanisms with provable price of anarchy for this problem. Interestingly, we achieve our price of anarchy results using simple and strongly local policies such as Shortest Job First and the Smith’s Rule (also called HDF). In particular, for the case of unweighted jobs, we design a coordination mechanism with polylogarithmic price of anarchy. For weighted jobs, on the other hand, we show that price of anarchy is a function of the depth of the tree and accompany this result by a lower bound for the price of anarchy for the Smith Rule policy and other common strongly local scheduling policies.

Our price of anarchy results also imply improved approximation algorithms for the underlying optimization problem of routing over a tree. This problem is well motivated from applications of routing in supercomputers and data center networks where average sojourn time is an important metric.

Keywords

Nash Equilibrium Schedule Policy Sojourn Time Coordination Mechanism Total Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. In: Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication, SIGCOMM 2008, pp. 63–74. ACM, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Anand, S., Garg, N., Kumar, A.: Resource augmentation for weighted flow-time explained by dual fitting. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 1228–1241. SIAM (2012)Google Scholar
  3. 3.
    Antoniadis, A., Moseley, B., Barcelo, N., Nugent, M., Cole, D., Pruhs, K.: Packet forwarding algorithms in a line network (2014)Google Scholar
  4. 4.
    Azar, Y., Jain, K., Mirrokni, V.: (almost) optimal coordination mechanisms for unrelated machine scheduling. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 323–332. Society for Industrial and Applied Mathematics, Philadelphia (2008)Google Scholar
  5. 5.
    Bansal, N., Kulkarni, J.: Minimizing flow-time on unrelated machines. CoRR, abs/1401.7284 (2014)Google Scholar
  6. 6.
    Bhattacharya, S., Im, S., Kulkarni, J., Munagala, K.: Coordination mechanisms from (almost) all scheduling policies. In: 5th Innovations in Theoretical Computer Science Conference, ITCS 2014 (2014)Google Scholar
  7. 7.
    Bilò, V., Fanelli, A., Moscardelli, L.: On lookahead equilibria in congestion games. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 54–67. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Caragiannis, I.: Efficient coordination mechanisms for unrelated machine scheduling. In: SODA, pp. 815–824 (2009)Google Scholar
  9. 9.
    Chekuri, C., Khanna, S.: Approximation algorithms for minimizing average weighted completion time (2004)Google Scholar
  10. 10.
    Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. Theor. Comput. Sci. 410(36), 3327–3336 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Christodoulou, G., Mehlhorn, K., Pyrga, E.: Improving the price of anarchy for selfish routing via coordination mechanisms. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 119–130. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Cole, R., Correa, J.R., Gkatzelis, V., Mirrokni, V., Olver, N.: Inner product spaces for minsum coordination mechanisms. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 539–548. ACM Press, New York (2011)Google Scholar
  13. 13.
    Farzad, B., Olver, N., Vetta, A.: A priority-based model of routing. Chicago J. Theor. Comput. Sci. 2008 (2008)Google Scholar
  14. 14.
    Harris, D.G., Srinivasan, A.: Constraint satisfaction, packet routing, and the lovasz local lemma. In: STOC, pp. 685–694 (2013)Google Scholar
  15. 15.
    Hoefer, M., Mirrokni, V.S., Röglin, H., Teng, S.-H.: Competitive routing over time. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 18–29. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Im, S., Moseley, B.: Scheduling over tree. Personal communication (2014)Google Scholar
  17. 17.
    Immorlica, N., Li, L.E., Mirrokni, V.S., Schulz, A.S.: Coordination mechanisms for selfish scheduling. Theor. Comput. Sci. 410(17), 1589–1598 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Karger, D., Stein, C., Wein, J.: Scheduling algorithms (1997)Google Scholar
  19. 19.
    Koch, R., Nasrabadi, E., Skutella, M.: Continuous and discrete flows over time - a general model based on measure theory. Math. Meth. of OR 73(3), 301–337 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: STACS, pp. 404–413 (1999)Google Scholar
  21. 21.
    Koutsoupias, E., Papakonstantinopoulou, K.: Contention issues in congestion games. In: ICALP (2), pp. 623–635 (2012)Google Scholar
  22. 22.
    Leighton, F.T., Maggs, B.M., Rao, S.: Universal packet routing algorithms (extended abstract). In: FOCS, pp. 256–269 (1988)Google Scholar
  23. 23.
    Leiserson, C.E.: Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE Trans. Computers 34(10), 892–901 (1985)CrossRefGoogle Scholar
  24. 24.
    Peis, B., Skutella, M., Wiese, A.: Packet routing: Complexity and algorithms. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 217–228. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Rothvoß, T.: A simpler proof for \(O(\textrm{Congestion} + \textrm{Dilation})\) packet routing. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 336–348. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: STOC, pp. 513–522 (2009)Google Scholar
  27. 27.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? In: FOCS, pp. 93–102 (2000)Google Scholar
  28. 28.
    Smith, W.: Various optimizers for single-stage production. Naval Research Logistics Quarterly (3), 59–66 (1956)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sayan Bhattacharya
    • 1
  • Janardhan Kulkarni
    • 2
  • Vahab Mirrokni
    • 3
  1. 1.Max-Planck Institute for InformaticsSaarbruckenGermany
  2. 2.Duke UniversityDurhamUSA
  3. 3.Google Inc.New YorkUSA

Personalised recommendations