Randomly Partitioned Encryption for Cloud Databases

  • Tahmineh Sanamrad
  • Lucas Braun
  • Donald Kossmann
  • Ramarathnam Venkatesan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8566)

Abstract

With the current advances in Cloud Computing, outsourcing data has never been so tempting. Along with outsourcing a database comes the privacy versus performance discussion. Order-Preserving Encryption (OPE) is one of the most attractive techniques for database encryption since it allows to execute range and rank queries efficiently without decrypting the data. On the other hand, people are reluctant to use OPE-based techniques in practice because of their vulnerability against adversaries with knowledge of the domain, its frequency distribution and query logs. This paper formally defines three real world driven attacks, called Domain Attack, Frequency Attack and Query Log Attack, typically launched by an honest-but-curious database or systems administrator. We also introduce measures to capture the probability distribution of the adversary’s advantage under each attacker model. Most importantly, we present a novel technique called Randomly Partitioned Encryption (RPE) to minimize the adversary’s advantage. Finally, we show that RPE not only withstands real world database adversaries, but also shows good performance that is close to state-of-art OPE schemes for both, read- and write-intensive workloads.

Keywords

Database Encryption Efficient Query Processing Domain Attack Frequency Attack Query Log Attack Randomly Partitioned Encryption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., et al.: Order preserving encryption for numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 563–574. ACM (2004) Google Scholar
  2. 2.
    Agrawal, R., et al.: Privacy-preserving data mining. ACM Sigmod Record 29(2), 439–450 (2000)CrossRefGoogle Scholar
  3. 3.
    Arasu, A., et al.: Orthogonal Security with Cipherbase. In: CIDR. Citeseer (2013)Google Scholar
  4. 4.
    Bajaj, S., et al.: TrustedDB: a trusted hardware based database with privacy and data confidentiality. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, pp. 205–216. ACM (2011)Google Scholar
  5. 5.
    Berger, B., et al.: Approximation alogorithms for the maximum acyclic subgraph problem. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 236–243. Society for Industrial and Applied Mathematics (1990)Google Scholar
  6. 6.
    Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited: Improved security analysis and alternative solutions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Chow, R., et al.: Controlling data in the cloud: outsourcing computation without outsourcing control. In: Proceedings of the 2009 ACM Workshop on Cloud Computing Security, pp. 85–90. ACM (2009)Google Scholar
  9. 9.
    Damiani, E., et al.: Balancing confidentiality and efficiency in untrusted relational DBMSs. In: Proceedings of the 10th ACM Conference on Computer and Communications Security, pp. 93–102. ACM (2003)Google Scholar
  10. 10.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  11. 11.
    Elovici, Y., Waisenberg, R., Shmueli, E., Gudes, E.: A structure preserving database encryption scheme. In: Jonker, W., Petković, M. (eds.) SDM 2004. LNCS, vol. 3178, pp. 28–40. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Gentry, C.: A fully homomorphic encryption scheme. PhD thesis. Stanford University (2009)Google Scholar
  13. 13.
    Guruswami, V., et al.: Beating the random ordering is hard: Inapproximability of maximum acyclic subgraph. In: IEEE 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 573–582. IEEE (2008)Google Scholar
  14. 14.
    Hacigümüş, H., et al.: Executing SQL over encrypted data in the database-service-provider model. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, pp. 216–227. ACM (2002)Google Scholar
  15. 15.
    Hildenbrand, S., et al.: Query processing on encrypted data in the cloud. Tech. rep. 735. Department of Computer Science, ETH Zurich (2011)Google Scholar
  16. 16.
    Hsueh, S.: Database encryption in SQL server 2008 enterprise edition. Microsoft, SQL Server Technical Article (2008)Google Scholar
  17. 17.
    Kadhem, H., et al.: A Secure and Efficient Order Preserving Encryption Scheme for Relational Databases. In: KMIS, pp. 25–35 (2010)Google Scholar
  18. 18.
    Kadhem, H., et al.: MV-OPES: Multivalued-order preserving encryption scheme: A novel scheme for encrypting integer value to many different values. IEICE Transactions on Information and Systems 93(9), 2520–2533 (2010)CrossRefGoogle Scholar
  19. 19.
    Katz, J., et al.: Introduction to modern cryptography: principles and protocols. CRC Press (2007)Google Scholar
  20. 20.
    Malkin, T., et al.: Order-Preserving Encryption Secure Beyond One-Wayness. Tech. rep. Citeseer (2013)Google Scholar
  21. 21.
    Nanda, A.: Transparent Data Encryption. Oracle Magazine (2005)Google Scholar
  22. 22.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    Popa, R.A., et al.: An ideal-security protocol for order-preserving encoding. In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 463–477. IEEE (2013)Google Scholar
  24. 24.
    Popa, R.A., et al.: Cryptdb: protecting confidentiality with encrypted query processing. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, pp. 85–100. ACM (2011)Google Scholar
  25. 25.
    Sanamrad, T., et al.: POP: a new encryption scheme for dynamic databases. Tech. rep. 782. Department of Computer Science, ETH Zurich (2013)Google Scholar
  26. 26.
    Seungmin, L., et al.: Chaotic order preserving encryption for efficient and secure queries on databases. IEICE Transactions on Information and Systems 92(11), 2207–2217 (2009)Google Scholar
  27. 27.
    Sion, R.: Secure data outsourcing. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 1431–1432. VLDB Endowment (2007)Google Scholar
  28. 28.
    Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Tu, S., et al.: Processing analytical queries over encrypted data. In: Proceedings of the 39th International Conference on Very Large Data Bases, pp. 289–300. VLDB Endowment (2013)Google Scholar
  30. 30.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Wang, H., et al.: Efficient secure query evaluation over encrypted XML databases. In: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 127–138. VLDB Endowment (2006)Google Scholar
  32. 32.
    Wang, S., et al.: Is Homomorphic Encryption the Holy Grail for Database Queries on Encrypted Data? Technical report, Department of Computer Science, UCSB (2012)Google Scholar
  33. 33.
    Wozniak, S., et al.: Beyond the ideal object: towards disclosure-resilient order-preserving encryption schemes. In: Proceedings of the 2013 ACM Workshop on Cloud Computing Security Workshop, pp. 89–100. ACM (2013)Google Scholar
  34. 34.
    Xiao, L., et al.: A Note for the Ideal Order-Preserving Encryption Object and Generalized Order-Preserving Encryption. In: IACR Cryptology ePrint Archive 2012, p. 350 (2012)Google Scholar
  35. 35.
    Yang, Z., Zhong, S., Wright, R.N.: Privacy-preserving queries on encrypted data. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 479–495. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Tahmineh Sanamrad
    • 1
  • Lucas Braun
    • 1
  • Donald Kossmann
    • 1
  • Ramarathnam Venkatesan
    • 2
  1. 1.Systems Group, Computer Science DepartementETH ZurichSwitzerland
  2. 2.Microsoft ResearchRedmondUSA

Personalised recommendations