ELITE: zEro Links Identity managemenT systEm

  • Tarik Moataz
  • Nora Cuppens-Boulahia
  • Frédéric Cuppens
  • Indrajit Ray
  • Indrakshi Ray
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8566)


Modern day biometric systems, such as those used by governments to issue biometric-based identity cards, maintain a deterministic link between the identity of the user and her biometric information. However, such a link brings in serious privacy concerns for the individual. Sensitive information about the individual can be retrieved from the database by using her biometric information. Individuals, for reasons of privacy therefore, may not want such a link to be maintained. Deleting the link, on the other hand, is not feasible because the information is used for purposes of identification or issuing of identity cards. In this work, we address this dilemma by hiding the biometrics information, and keeping the association between biometric information and identity probabilistic. We extend traditional Bloom filters to store the actual information and propose the SOBER data structure for this purpose. Simultaneously, we address the challenge of verifying an individual under the multitude of traits assumption, so as to guarantee that impersonation is always detected. We discuss real-world impersonation use cases, analyze the privacy limits, and compare our scheme to existing solutions.


Hash Function Greedy Algorithm Lookup Table Bloom Filter Biometric System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adjedj, M., Bringer, J., Chabanne, H., Kindarji, B.: Biometric Identification over Encrypted Data Made Feasible. In: Prakash, A., Sen Gupta, I. (eds.) ICISS 2009. LNCS, vol. 5905, pp. 86–100. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced Allocations. In: Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pp. 593–602. ACM, Chicago (1994)Google Scholar
  3. 3.
    Bloom, B.H.: Space/Time Trade-offs in Hash Coding with Allowable Errors. Communications of the ACM 13(7), 422–426 (1970)CrossRefzbMATHGoogle Scholar
  4. 4.
    Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public Key Encryption That Allows PIR Queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 50–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bringer, J., Chabanne, H., Kindarji, B.: Error-Tolerant Searchable Encryption. In: Proceedings of IEEE International Conference on Communications, Dresden, Germany, pp. 1–6 (June 2009)Google Scholar
  6. 6.
    Cappelli, R., Ferrara, M., Maltoni, D.: Minutia Cylinder-Code: A New Representation and Matching Technique for Fingerprint Recognition. IEEE Transaction on Pattern Analysis and Machine Intelligence 32(12), 2128–2141 (2010)CrossRefGoogle Scholar
  7. 7.
    Cappelli, R., Ferrara, M., Maltoni, D.: Fingerprint Indexing Based on Minutia Cylinder-Code. IEEE Transaction on Pattern Analysis and Machine Intelligence 33(5), 1051–1057 (2011)CrossRefGoogle Scholar
  8. 8.
    Feller, W.: An Introduction to Probability Theory and Its Applications: Volume One. John Wiley & Sons (1968)Google Scholar
  9. 9.
    Host, L.: Some Asymptotic Results For Occupancy Problems. The Annals of Probability 5(6), 1028–1035 (1977)CrossRefGoogle Scholar
  10. 10.
    Jain, A.K., Bolle, R.M., Pankanti, S.: Biometrics: Personal Identification in Networked Society. Springer (1999)Google Scholar
  11. 11.
    Jain, A.K., Nandakumar, K., Nagar, A.: Biometric Template Security. EURASIP Journal on Advances in Signal Processing 2008 (2008)Google Scholar
  12. 12.
    Justus, B., Cuppens, F., Cuppens-Boulahia, N., Bringer, J., Chabanne, H., Cipiere, O.: Define Privacy-preserving Setbase Drawer Size Standard: A ε-closeness Perspective. In: Proceedings of the 11th Annual International Conference on Privacy, Security and Trust, Tarragona, Catalonia, Spain, pp. 362–365 (July 2013)Google Scholar
  13. 13.
    Justus, B., Cuppens, F., Cuppens-Boulahia, N., Bringer, J., Chabanne, H., Cipiere, O.: Enhance Biometric Database Privacy: Defining Privacy-Preserving Drawer Size Standard for the Setbase. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964, pp. 274–281. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Kevenaar, T.A.M., Korte, U., Merkle, J., Niesing, M., Ihmor, H., Busch, C., Zhou, X.: A Reference Framework for the Privacy Assessment of Keyless Biometric Template Protection Systems. In: Proceedings of the Special Interest Group on Biometrics and Electronic Signatures, Darmstadt, Germany, pp. 45–56 (September 2010)Google Scholar
  15. 15.
    Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient Search for Approximate Nearest Neighbor in High Dimensional Spaces. In: Proceedings of the 30th Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, pp. 614–623 (May 1998)Google Scholar
  16. 16.
    Mimaroglu, S., Simovici, D.A.: Approximate Computation of Object Distances by Locality-Sensitive Hashing. In: Proceedings of the 4th International Conference on Data Mining, Las Vegas, Nevada, USA, pp. 714–718 (July 2008)Google Scholar
  17. 17.
    Schmidt, G.J., Soutar, C., Tomko, G.J.: Fingerprint Controlled Public Key Cryptographic System. Patent #US5541994 A. Mytec Technologies Inc. (July 1996)Google Scholar
  18. 18.
    Shamir, A.: Adding Privacy to Biometric Databases: The Setbase Approach. Presentation at the 31st International Conference of Data Protection and Privacy (2009), (last accessed September 23, 2013)
  19. 19.
    Steane, A.M.: Error Correcting Codes in Quantum Theory. Physical Review Letters 77(5), 793 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Talwar, K., Wieder, U.: Balanced Allocations: The Weighted Case. In: Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing, STOC 2007, pp. 256–265. ACM, New York (2007)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Tarik Moataz
    • 1
    • 2
  • Nora Cuppens-Boulahia
    • 2
  • Frédéric Cuppens
    • 2
  • Indrajit Ray
    • 1
  • Indrakshi Ray
    • 1
  1. 1.Dept. of Computer ScienceColorado State UniversityFort CollinsUSA
  2. 2.Institut Mines-TélécomTélécom BretagneCesson SévignéFrance

Personalised recommendations