ALE: AES-Based Lightweight Authenticated Encryption

  • Andrey Bogdanov
  • Florian Mendel
  • Francesco Regazzoni
  • Vincent Rijmen
  • Elmar Tischhauser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8424)

Abstract

In this paper, we propose a new Authenticated Lightweight Encryption algorithm coined ALE. The basic operation of ALE is the AES round transformation and the AES-128 key schedule. ALE is an online single-pass authenticated encryption algorithm that supports optional associated data. Its security relies on using nonces.

We provide an optimized low-area implementation of ALE in ASIC hardware and demonstrate that its area is about 2.5 kGE which is almost two times smaller than that of the lightweight implementations for AES-OCB and ASC-1 using the same lightweight AES engine. At the same time, it is at least 2.5 times more performant than the alternatives in their smallest implementations by requiring only about 4 AES rounds to both encrypt and authenticate a 128-bit data block for longer messages. When using the AES-NI instructions, ALE outperforms AES-GCM, AES-CCM and ASC-1 by a considerable margin, providing a throughput of 1.19 cpb close that of AES-OCB, which is a patented scheme. Its area- and time-efficiency in hardware as well as high performance in high-speed parallel software make ALE a promising all-around AEAD primitive.

Keywords

Authenticated encryption Lightweight cryptography AES 

References

  1. 1.
    ISO/IEC 19772:2009. Information Technology - Security techniques - Authenticated Encryption (2009)Google Scholar
  2. 2.
    Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-128 with optional authentication. IJWMC 5(1), 48–59 (2011)CrossRefGoogle Scholar
  3. 3.
    Akdemir, K., Dixon, M., Feghali, W., Fay, P., Gopal, V., Guilford, J., Erdinc Ozturk, G.W., Zohar, R.: Breakthrough AES Performance with Intel AES New Instructions. Intel white paper, January 2010Google Scholar
  4. 4.
    Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: a lightweight hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 1–15. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  5. 5.
    Babbage, S., Dodd, M.: The MICKEY stream ciphers. In: Robshaw and Billet [37], pp. 191–209Google Scholar
  6. 6.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  7. 7.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference. Submission to NIST (Round 3), January 2011. http://keccak.noekeon.org
  8. 8.
    Biryukov, A.: design of a new stream cipher-LEX. In: Robshaw and Billet [37], pp. 48–56Google Scholar
  9. 9.
    Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.: Spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  11. 11.
    Bouillaguet, C., Derbez, P., Fouque, P.A.: Automatic search of attacks on round-reduced AES and applications. In: Rogaway [38], pp. 169–187Google Scholar
  12. 12.
    Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  13. 13.
    Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  14. 14.
    Daemen, J., Rijmen, V.: The Pelican MAC Function. Cryptology ePrint Archive, Report 2005/088 (2005)Google Scholar
  15. 15.
    Daemen, J., Rijmen, V.: Refinements of the ALRED construction and MAC security claims. IET Inf. Secur. 4(3), 149–157 (2010)CrossRefGoogle Scholar
  16. 16.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers. In: Clavier, Ch., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  17. 17.
    De Cannière, C., Preneel, B.: Trivium. In: Robshaw and Billet [37], pp. 244–266Google Scholar
  18. 18.
    Dunkelman, O., Keller, N.: An improved impossible differential attack on MISTY1. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 441–454. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  19. 19.
    Dunkelman, O., Keller, N., Shamir, A.: ALRED Blues: New Attacks on AES-Based MAC’s. Cryptology ePrint Archive, Report 2011/095 (2011)Google Scholar
  20. 20.
    Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Methods and Techniques. NIST Special Publication, Gaithersburg (2001)Google Scholar
  21. 21.
    Engels, D., Saarinen, M.-J.O., Schweitzer, P., Smith, E.M.: The Hummingbird-2 lightweight authenticated encryption algorithm. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 19–31. Springer, Heidelberg (2012) Google Scholar
  22. 22.
    Englund, H., Hell, M., Johansson, T.: A note on distinguishing attacks. In: Pre-proceedings of State of the Art of Stream Ciphers workshop (SASC 2007), Bochum, Germany, pp. 73–78 (2007)Google Scholar
  23. 23.
    Gueron, S.: Intel Advanced Encryption Standard (AES) Instructions Set. Intel white paper, January 2010Google Scholar
  24. 24.
    Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway [38], pp. 222–239Google Scholar
  25. 25.
    Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain family of stream ciphers. In: Robshaw and Billet [37], pp. 179–190Google Scholar
  26. 26.
    Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: a new block cipher suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  27. 27.
    Hong, S.H., Lee, S.-J., Lim, J.-I., Sung, J., Cheon, D.H., Cho, I.: Provable security against differential and linear cryptanalysis for the SPN structure. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 273–283. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  28. 28.
    Jakimoski, G., Khajuria, S.: ASC-1: an authenticated encryption stream cipher. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 356–372. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  29. 29.
    Kavun, E.B., Yalcin, T.: A lightweight implementation of Keccak hash function for radio-frequency identification applications. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 258–269. Springer, Heidelberg (2010) Google Scholar
  30. 30.
    Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES variants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  31. 31.
    Lim, C.H., Korkishko, T.: mCrypton – a lightweight block cipher for security of low-cost RFID tags and sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  32. 32.
    Matsuda, S., Moriai, S.: Lightweight cryptography for the cloud: exploit the power of bitslice implementation. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 408–425. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  33. 33.
    McGrew, D.: Authenticated Encryption in Practice. DIAC – Directions in Authenticated Ciphers, July 2012Google Scholar
  34. 34.
    Minematsu, K., Tsunoo, Y.: Provably secure MACs from differentially-uniform permutations and AES-based implementations. In: Robshaw [36], pp. 226–241Google Scholar
  35. 35.
    Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  36. 36.
    Robshaw, M. (ed.): FSE 2006. LNCS, vol. 4047. Springer, Heidelberg (2006)MATHGoogle Scholar
  37. 37.
    Robshaw, M., Billet, O. (eds.): New Stream Cipher Designs. LNCS, vol. 4986. Springer, Heidelberg (2008)MATHGoogle Scholar
  38. 38.
    Rogaway, P. (ed.): CRYPTO 2011. LNCS, vol. 6841. Springer, Heidelberg (2011)MATHGoogle Scholar
  39. 39.
    Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P. (eds.) Computer and Communications Security, pp. 196–205. ACM, New York (2001)Google Scholar
  40. 40.
    Rogaway, P., Krovetz, T.: OCB Latest Code and News. http://www.cs.ucdavis.edu/~rogaway/ocb/news/
  41. 41.
    Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: a scalable encryption algorithm for small embedded applications. In: Domingo-Ferrer, J., Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  42. 42.
    Wu, H., Preneel, B.: Cryptanalysis of the stream cipher DECIM. In: Robshaw [36], pp. 30–40Google Scholar
  43. 43.
    Yuan, Z., Wang, W., Jia, K., Xu, G., Wang, X.: New birthday attacks on some MACs based on block ciphers. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 209–230. Springer, Heidelberg (2009) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrey Bogdanov
    • 1
  • Florian Mendel
    • 2
  • Francesco Regazzoni
    • 3
    • 4
  • Vincent Rijmen
    • 5
  • Elmar Tischhauser
    • 5
  1. 1.Technical University of DenmarkKongens LyngbyDenmark
  2. 2.IAIKGraz University of TechnologyGrazAustria
  3. 3.ALaRI - USILuganoSwitzerland
  4. 4.Delft University of TechnologyDelftNetherlands
  5. 5.Department of ESAT/COSICKU Leuven and iMindsLeuvenBelgium

Personalised recommendations