Steganalysis of Compressed Speech Based on Markov and Entropy

  • Haibo Miao
  • Liusheng Huang
  • Yao Shen
  • Xiaorong Lu
  • Zhili Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8389)


Compressed domain based steganography (CDBS) is a kind of relatively new and secure audio steganography. Up to date, there is little research on the steganalysis against this kind of audio steganography. In this paper, we introduce two methods to detect various CDBS on ACELP speech. One is the Markov method and the other is the entropy method. Both methods are based on the observation that the steganography behavior has certain effects on the relationship among the pulses in the same track. The Markov transition probabilities are utilized to evaluate the interrelationships between adjacent pulses and entropy is employed to measure the “disorder” of combined pulse distributions. First, Markov transition probabilities, joint entropy and conditional entropy features of the track pulses are extracted; a support vector machine (SVM) is then applied to the features for discovering the existence of hidden data in compressed speech signals, respectively. Some famous CDBS methods on ACELP encoded speech are considered. Experimental results have proven the effectiveness of the two methods.


Steganalysis Compressed speech Markov Entropy SVM CDBS 



This work is supported by the National Natural Science Foundation of China (No. 61202407), the Fundamental Research Funds for the Central Universities (No. WK0110000033 & No.WK0110000027), the Natural Science Foundation of Jiangsu Province of China (No. BK2011357) and the Guangdong Province Strategic Cooperation Project with the Chinese Academy of Sciences (No. 2012B090400013).

The authors would like to thank the anonymous reviewers for their helpful comments and suggestions.


  1. 1.
    Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Information hiding - a survey. Proc. IEEE Spec. Issue Prot. Multimed. Content 87(7), 1062–1078 (1999)Google Scholar
  2. 2.
    Wang, H., Wang, S.: Cyber warfare: steganography vs. steganalysis. Commun. ACM 47(10), 76–82 (2004)CrossRefGoogle Scholar
  3. 3.
    Liu, Q., Sung, A.H., Qiao, M.: Derivative-based audio steganalysis. ACM Trans. Multimed. Comput. Commun. Appl. 7(3), 1–19 (2011)CrossRefGoogle Scholar
  4. 4.
    Scott A. Moskowitz, Marc Cooperman.M.S.A., C. M.: Steganographic method and device. USA Patent (1997)Google Scholar
  5. 5.
    Bender, W., Gruhl, D., Morimoto, N., Lu, A.: Techniques for data hiding. IBM Syst. J. 35(3–4), 313–336 (1996)CrossRefGoogle Scholar
  6. 6.
    Lee, C., Moallemi, K., Warren, R.: Method and apparatus for transporting auxiliary data in audio signals. USA Patent (1998)Google Scholar
  7. 7.
    Lee, S.-K., Ho, Y.-S.: Digital audio watermarking in the cepstrum domain. IEEE Trans. Consum. Electron. 46(3), 744–750 (2000)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gruhl, D., Bender, W., Lu, A.: Echo hiding. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 295–315. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Gopalan, K., Wenndt, S., Noga, A., Haddad, D., Adams, S.: Covert speech communication via cover speech by tone insertion. In: Proceedings of the 2003 IEEE Aerospace Conference, Big Sky, MT (2003)Google Scholar
  10. 10.
    Gopalan, K., Wenndt, S.: Audio Steganography for covert data transmission by imperceptible tone insertion. In: Proceedings of the IASTED International Conference on Communication Systems and Applications, Banff, Canada (2004)Google Scholar
  11. 11.
    Miao, H., Huang, L., Chen, Z., Yang, W., Al-hawbani, A.: A new scheme for covert communication via 3G encoded speech. Comput. Electr. Eng. 38(6), 1490–1501 (2012)CrossRefGoogle Scholar
  12. 12.
    Wu, Z., Yang, W.: Speech information hiding in G.729. Chin. J. Electron. 15(3), 545–549 (2006)Google Scholar
  13. 13.
    Lu, Z.M., Yan, B.: Watermarking combined with CELP speech coding for authentication. IEICE Trans. Inf. Syst. E88-D(2), 330–334 (2005)Google Scholar
  14. 14.
    Geiser, B., Vary, P.: Backwards compatible wideband telephony in mobile networks: CELP watermarking and bandwidth extension. In: Proceedings of ICASSP, Honolulu, Hawai’i, USA (2007)Google Scholar
  15. 15.
    Geiser, B., Vary, P.: High rate data hiding in ACELP speech codec. In: Proceedings of ICASSP, Caesars Palace, Las Vegas, Nevada, USA (2008)Google Scholar
  16. 16.
    Kraetzer, C., Dittmann, J.: Pros and cons of mel-cepstrum based audio steganalysis using SVM classification. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 359–377. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Zeng, W., Ai, H., Hu, R.: A novel steganalysis algorithm of phase coding in audio signal. In: Proceedings of the International Conference on Advanced Language Processing and Web Information Technology, pp. 261–264 (2007)Google Scholar
  18. 18.
    Zeng, W., Ai, H., Hu, R.: An algorithm of echo steganalysis based on power cepstrum and pattern classification. In: Proceedings of the International Conference on Information and Automation, pp. 1667–1670 (2008)Google Scholar
  19. 19.
    Paraskevas, I., Chilton, E.: Combination of magnitude and phase statistical features for audio classification. Acoust. Res. Lett. Online Acoust. Soc. Am. 5(3), 111–117 (2004)CrossRefGoogle Scholar
  20. 20.
    Johnson, M.K., Lyu, S., Farid, H.: Steganalysis of recorded speech. In: Proceedings of Conference on Security, Steganography and Watermarking of Multimedia, Contents VII, pp. 664–672 (2005)Google Scholar
  21. 21.
    Ozer, H., Avcibas, I., Sankur, B., Memon, N.D.: Steganalysis of audio based on audio quality metrics. In: Proceedings of the Conference on Security, Steganography and Watermarking of Multimedia, Contents V, vol. 5020, pp. 55–66 (2003)Google Scholar
  22. 22.
    Liu, Y., Chiang, K., Corbett, C., Archibald, R., Mukherjee, B., Ghosal, D.: A novel audio steganalysis based on high-order statistics of a distortion measure with hausdorff distance. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 487–501. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Holotyak, T., Fridrich, J., Voloshynovskiy, S.: Blind statistical steganalysis of additive steganography using wavelet higher order statistics. In: Proceedings of the 9th IFIP TC-6 TC-11 International Conference on Communications and Multimedia Security (2005)Google Scholar
  24. 24.
    Avcibas, I.: Audio steganalysis with content-independent distortion measures. IEEE Sig. Process. Lett. 13(2), 92–95 (2006)CrossRefGoogle Scholar
  25. 25.
    Liu, Q., Sung, A.H., Qiao, M.: Novel stream mining for audio steganalysis. In: Proceedings of the 17th ACM international conference on multimedia, Beijing, pp. 95–104 (2009)Google Scholar
  26. 26.
    Qi, D., Xijian, P.: Steganalysis of compressed speech based on histogram features. In: Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), Chengdu, China (2010)Google Scholar
  27. 27.
    Chen, Z., Huang, L., Meng, P., Yang, W., Miao, H.: Blind linguistic steganalysis against translation based steganography. In: Kim, H.-J., Shi, Y.Q., Barni, M. (eds.) IWDW 2010. LNCS, vol. 6526, pp. 251–265. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), Software.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Haibo Miao
    • 1
    • 2
  • Liusheng Huang
    • 1
    • 2
  • Yao Shen
    • 1
    • 2
  • Xiaorong Lu
    • 1
    • 2
  • Zhili Chen
    • 1
    • 2
  1. 1.NHPCC, Department of Computer Science and TechnologyUSTCHefeiChina
  2. 2.Suzhou Institute for Advanced StudyUSTCSuzhouChina

Personalised recommendations