Identifying Video Forgery Process Using Optical Flow

  • Wan Wang
  • Xinghao Jiang
  • Shilin Wang
  • Meng Wan
  • Tanfeng Sun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8389)

Abstract

With the extensive equipment of surveillance systems, the assessment of the integrity of surveillance videos is of vital importance. In this paper, an algorithm based on optical flow and anomaly detection is proposed to authenticate digital videos and further identify the inter-frame forgery process (i.e. frame deletion, insertion, and duplication). This method relies on the fact that forgery operation will introduce discontinuity points to the optical flow variation sequence and these points show different characteristics depending on the type of forgery. The anomaly detection scheme is adopted to distinguish the discontinuity points. Experiments were performed on several real-world surveillance videos delicately forged by volunteers. The results show that the proposed algorithm is effective to identify forgery process with localization, and is robust to some degree of MPEG compression.

Keywords

Forgery detection Surveillance video Optical flow 

References

  1. 1.
    Farid, H.: A survey of image forgery detection. IEEE Signal Process. Mag. 26(2), 16–25 (2009)CrossRefGoogle Scholar
  2. 2.
    Milani, S., Fontani, M., Bestagini, P., Barni, M., Piva, A., et al.: An overview on video forensics. APSIPA Trans. Signal Inf. Process. 1, e2 (2012)Google Scholar
  3. 3.
    Chen, M., Fridrich, J., Goljan, M., Lukáš, J.: Source digital camcorder identification using sensor photo response non-uniformity. In: SPIE 2007, vol. 6505 (2007)Google Scholar
  4. 4.
    van Houten, W., Geradts, Z., Franke, K., Veenman, C.: Verification of video source camera competition (CAMCOM 2010). In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 22–28. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Chen, W., Shi, Y.Q.: Detection of double MPEG compression based on first digit statistics. In: Kim, H.-J., Katzenbeisser, S., Ho, A.T. (eds.) IWDW 2008. LNCS, vol. 5450, pp. 16–30. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Luo, W.Q., Wu, M., Huang, J.W.: MPEG recompression detection based on block artifacts. In: SPIE 2008, vol. 6819 (2008)Google Scholar
  7. 7.
    Mondaini, N., Caldelli, R., Piva, A., Barni, M., Cappellini, V.: Detection of malevolent changes in digital video for forensic applications. In: SPIE 2007, vol. 6505 (2007)Google Scholar
  8. 8.
    Hsu, C.C., Hung, T.Y., Lin, C.W., Hsu, C.T.: Video forgery detection using correlation of noise residue. In: MMSP 2008, pp. 170–174 (2008)Google Scholar
  9. 9.
    Kobayashi, M., Okabe, T., Sato, Y.: Detecting forgery from static-scene video based on inconsistency in noise level functions. IEEE Trans. Inf. Forensics Secur. 5(4), 883–892 (2010)CrossRefGoogle Scholar
  10. 10.
    Wang, W.H., Farid, H.: Exposing digital forgeries in video by detecting double MPEG compression. In: MM&Sec 2006, pp. 37–47 (2006)Google Scholar
  11. 11.
    Su, Y.T., Nie, W.Z., Zhang, C.Q.: A frame tampering detection algorithm for MPEG videos. In: ITAIC 2011, vol. 2, pp. 461–464 (2011)Google Scholar
  12. 12.
    Dong, Q., Yang, G.B., Zhu, N.B.: A MCEA based passive forensics scheme for detecting frame-based video tampering. Digit. Investig. 9(2), 151–159 (2012)CrossRefGoogle Scholar
  13. 13.
    Wang, W.H., Farid, H.: Exposing digital forgeries in video by detecting duplication. In: MM&Sec 2007, pp. 35–42 (2007)Google Scholar
  14. 14.
    Zhang, J., Su, Y.T., Zhang, M.Y.: Exposing digital video forgery by ghost shadow artifact. In: MiFor 2009 and MM 2009, pp. 49–53 (2009)Google Scholar
  15. 15.
    Conotter, V., O’Brien, J.F., Farid, H.: Exposing digital forgeries in ballistic motion. IEEE Trans. Inf. Forensics Secur. 7(1), 283–296 (2012)CrossRefGoogle Scholar
  16. 16.
    Chao, J., Jiang, X., Sun, T.: A novel video inter-frame forgery model detection scheme based on optical flow consistency. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2012. LNCS, vol. 7809, pp. 267–281. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: 7th International Joint Conference on Artificial Intelligence, vol. 2, pp. 674–679 (1981)Google Scholar
  18. 18.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009)CrossRefGoogle Scholar
  19. 19.
    Grubbs, F.: Procedures for detecting outlying observations in samples. Technometrics 11(1), 1–21 (1969)CrossRefGoogle Scholar
  20. 20.
    TREC Video Retrieval Evaluation. http://trecvid.nist.gov/

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Wan Wang
    • 1
  • Xinghao Jiang
    • 1
  • Shilin Wang
    • 1
  • Meng Wan
    • 2
  • Tanfeng Sun
    • 1
  1. 1.School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Center for Science and Technology DevelopmentMinistry of EducationBeijingChina

Personalised recommendations