A Study of RPL DODAG Version Attacks

  • Anthéa Mayzaud
  • Anuj Sehgal
  • Rémi Badonnel
  • Isabelle Chrisment
  • Jürgen Schönwälder
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8508)


The IETF designed the Routing Protocol for Low power and Lossy Networks (RPL) as a candidate for use in constrained networks. Keeping in mind the different requirements of such networks, the protocol was designed to support multiple routing topologies, called DODAGs, constructed using different objective functions, so as to optimize routing based on divergent metrics. A DODAG versioning system is incorporated into RPL in order to ensure that the topology does not become stale and that loops are not formed over time. However, an attacker can exploit this versioning system to gain an advantage in the topology and also acquire children that would be forced to route packets via this node. In this paper we present a study of possible attacks that exploit the DODAG version system. The impact on overhead, delivery ratio, end-to-end delay, rank inconsistencies and loops is studied.


  1. 1.
    Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J., Alexander, R.: RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. IETF RFC 6550 (March 2012)Google Scholar
  2. 2.
    Seeber, S., Sehgal, A., Stelte, B., Rodosek, G.D., Schönwälder, J.: Towards A Trust Computing Architecture for RPL in Cyber Physical Systems. In: IFIP/IEEE International Conference on Network and Service Management (CNSM), Zürich, Switzerland (October 2013)Google Scholar
  3. 3.
    Sehgal, A., Perelman, V., Kuryla, S., Schönwälder, J.: Management of Resource Constrained Devices in the Internet of Things. IEEE Communications Magazine 50(12), 144–149 (2012)CrossRefGoogle Scholar
  4. 4.
    Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a Lightweight and Flexible Operating System for Tiny Networked Sensors. In: 29th Annual IEEE International Conference on Local Computer Networks (LCN), Tampa, FL (November 2004)Google Scholar
  5. 5.
    Ko, J., Dawson-Haggerty, S., Gnawali, O., Culler, D., Terzis, A.: Evaluating the Performance of RPL and 6LoWPAN in TinyOS. In: Workshop on Extending the Internet to Low Power and Lossy Networks (IP+SN), Chicago, IL (April 2011)Google Scholar
  6. 6.
    Baccelli, E., Hahm, O., Günes, M., Wählisch, M., Schmidt, T.C.: RIOT OS: Towards an OS for the Internet of Things. In: 32nd IEEE INFOCOM Poster Session, Turin, Italy (April 2013)Google Scholar
  7. 7.
    Cheneau, T.: SimpleRPL (February 2014),
  8. 8.
    Tsao, T., Alexander, R., Dohler, M., Daza, V., Lozano, A., Richardson, M.: A Security Threat Analysis for Routing Protocol for Low-power and Lossy Networks (RPL). IETF Internet Draft <draft-ietf-roll-security-threats-06> (December 2013)Google Scholar
  9. 9.
    Chugh, K., Aboubaker, L., Loo, J.: Case Study of a Black Hole Attack on LoWPAN-RPL. In: Proc. of the Sixth International Conference on Emerging Security Information, Systems and Technologies (SECURWARE), Rome, Italy, pp. 157–162 (August 2012)Google Scholar
  10. 10.
    Weekly, K., Pister, K.: Evaluating Sinkhole Defense Techniques in RPL Networks. In: 20th IEEE International Conference on Network Protocols (ICNP), Austin, TX, pp. 1–6 (November 2012)Google Scholar
  11. 11.
    Wallgren, L., Raza, S., Voigt, T.: Routing Attacks and Countermeasures in the RPL-Based Internet of Things. International Journal of Distributed Sensor Networks 13(794326) (2013)Google Scholar
  12. 12.
    Landsmann, M., Perrey, H., Ugus, O., Wählisch, M., Schmidt, T.: Topology Authentication in RPL. In: 32nd IEEE INFOCOM Poster Session, Turin, Italy (April 2013)Google Scholar
  13. 13.
    Dvir, A., Holczer, T., Buttyan, L.: VeRA - Version Number and Rank Authentication in RPL. In: 8th IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), Hangzhou, China, pp. 709–714 (October 2011)Google Scholar
  14. 14.
    Perrey, H., Landsmann, M., Ugus, O., Wählisch, M., Schmidt, T.: TRAIL: Topology Authentication in RPL. arXiv preprint arXiv:1312.0984 (2013)Google Scholar
  15. 15.
    Levis, P.A., Patel, N., Culler, D., Shenker, S.: Trickle: A Self Regulating Algorithm for Code Propagation and Maintenance in Wireless Sensor Networks. In: 1st Symposium on Networked Systems Design and Implementation (NSDI), San Francisco, CA (March 2004)Google Scholar
  16. 16.
    Hui, J., Vasseur, J.: The Routing Protocol for Low-Power and Lossy Networks (RPL) Option for Carrying RPL Information in Data-Plane Datagrams. IETF RFC 6553 (March 2012)Google Scholar
  17. 17.
    Korte, K.D., Sehgal, A., Schönwälder, J.: A Study of the RPL Repair Process Using ContikiRPL. In: Sadre, R., Novotný, J., Čeleda, P., Waldburger, M., Stiller, B. (eds.) AIMS 2012. LNCS, vol. 7279, pp. 50–61. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-Level Sensor Network Simulation with COOJA. In: 31st IEEE Conference on Local Computer Networks (LCN), Tampa, FL, pp. 641–648 (November 2006)Google Scholar

Copyright information

© International Federation for Information Processing 2014

Authors and Affiliations

  • Anthéa Mayzaud
    • 1
  • Anuj Sehgal
    • 2
  • Rémi Badonnel
    • 1
  • Isabelle Chrisment
    • 1
  • Jürgen Schönwälder
    • 2
  1. 1.TELECOM NancyUniversité de Lorraine, LORIA UMR 7503Villers-lès-NancyFrance
  2. 2.Computer ScienceJacobs University BremenBremenGermany

Personalised recommendations